Nafath by Mada

Issue no. 21 October 2022

www.mada.org.qa

Coood H

Inclusive Education

Mada ICT Accessibility and Inclusive Design ICT-AID Competency Framework

ICT-AID use cases by Mada partners in Qatar

ICT accessibility Research Capacity building in the State of Qatar Using Brain-Computer Interface to improve learning skills for students with disabilities a rapid review

Page 43

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

Page 57

Mada FabLab

 Mada ICT Accessibility and Inclusive Design ICT-AID Competency Framework

 ICT-AID use cases by Mada partners in Gatar

 Virge State of the State of

Issue no. 21 October 2022

ISSN (online): 2789-9152 ISSN (print): 2789-9144

Reuse Rights and Reprint Permissions

Nafath is an open access journal. Educational or personal use of this material is permitted without fee, provided such use: 1) is not made for profit; 2) includes this notice and a full citation to the original work on the first page of the copy; and 3) does not imply Mada endorsement of any third-party products or services. Authors and their companies are permitted to post the accepted version of Nafath material on their own Web servers without permission, provided that the Mada notice and a full citation to the original work appear on the first screen of the posted copy. An accepted manuscript is a version which has been revised by the author to incorporate review suggestions, but not the published version with copyediting, proofreading, and formatting added by Mada Center. For more information, please go to: https://nafath. mada.org.qa. Permission to reprint/republish this material for commercial, advertising, or promotional purposes or for creating new collective works for resale or redistribution must be obtained from Mada.

Nafath © 2021 by Mada Center is licensed under CC BY-NC-ND 4.0.

Editors

Maha Al Mansouri Amani Ali Al-Tamimi Achraf Othman

Editorial and Reviewer Board

Al Jazi Al Jabr Mohamed Koutheair Khribi Amnah Mohammed Al-Mutawaa Oussama El Ghoul Dr. Amira Dhouib Alia Jamal AlKathery

Contributors

Dena Al Thani, Hamad Bin Mohammed Ali Loutfy Einas Fathelrahman Mohamed Mohamed koutheair Khribi, Achraf Othman Hend S. Al-Khalifa Bayan Albatati Shahbaz Ahmed Al Danna Al Mohannadi

About Mada

Mada Center is a private institution for public benefit, which was founded in 2010 as an initiative that aims at promoting digital inclusion and building a technology-based community that meets the needs of persons with functional limitations (PFLs) – persons with disabilities (PWDs) and the elderly in Qatar. Mada today is the world's Center of Excellence in digital access in Arabic.

Through strategic partnerships, the center works to enable the education, culture and community sectors through ICT to achieve an inclusive community and educational system. The Center achieves its goals by building partners' capabilities and supporting the development and accreditation of digital platforms in accordance with international standards of digital access. Mada raises awareness, provides consulting services and increases the number of assistive technology solutions in Arabic through the Mada Innovation Program to enable equal opportunities for PWDs and the elderly in the digital community.

At the national level, Mada Center has achieved a digital accessibility rate of 90% amongst government websites, while Qatar ranks first globally on the Digital Accessibility Rights Evaluation Index (DARE).

Our Vision

Enhancing ICT accessibility in Qatar and beyond.

Our Mission

Unlock the potential of persons with functional limitations (PFLs) – persons with disabilities (PWDs) and the elderly - through enabling ICT accessible capabilities and platforms.

About Nafath

Nafath aims to be a key information resource for disseminating the facts about latest trends and innovation in the field of ICT Accessibility. It is published in English and Arabic languages on a quarterly basis and intends to be a window of information to the world, highlighting the pioneering work done in our field to meet the growing demands of ICT Accessibility and Assistive Technology products and services in Qatar and the Arab region.

4

Content Page

Page 8

ICT accessibility Research Capacity building in the State of Qatar

Dena Al Thani Hamad Bin Khalifa University, Qatar

Page 20

Capacity Building and Advocacy to Promote the Digital Accessibility Rights of Persons with Disabilities

Mohammed Ali Loutfy G3ICT, DARE Academy, USA

Page 26

Inclusion of STEAM Innovation Spaces A Critical Issue for Learners with Disabilities

Einas Fathelrahman Mohamed Ibtechar, Qatar

Page 32

Mada ICT Accessibility and Inclusive Design ICT-AID Competency Framework

Mohamed Kouhteair Khribi Mada Center, Qatar

Page 46

Using Brain-Computer Interface to improve learning skills for students with disabilities a rapid review

Achraf Othman Mada Center, Qatar

Nafath Issue 21

5

Page 56

Usability Assessment of Delivery Applications for Visually Impaired People A Case from Saudi Arabia

Hend S. Al-Khalifa and Bayan Albatati King Saud University, Riyadh, Saudi Arabia

Page 62

Mada FabLab

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

Achraf Othman, Shahbaz Ahmed, Al Danna Al-Mohannadi Mada Center, Qatar

Nafath Issue 21

7

Open call for papers

Nafath, an open access journal, solicits original research contributions addressing the accessibility, usability and key information resource for disseminating the facts about latest trends and innovation in the field of ICT Accessibility to enable persons with disabilities and the ederly. Nafath is focusing on theoretical, methodological, and empirical research, of both technological nature, that addresses equitable access and active participation of potentially all citizens in the Information Society.

Topics of specific interest

Important aspects and topics to be discussed evolve around (but are not limited to):

- Accessibility guidelines
- Accessible games
- Adaptable and adaptive interfaces
- Alternative and augmented Input /Output techniques
- Applications of assistive technologies in the mainstream
- Architectures, development methods and tools for ICT Accessibility
- Design for All and accessibility education and training
- Evaluation of Accessibility, Usability, and User Experience
- Innovative Assistive applications and environments and ICT Accessibility solutions
- Localization

& Accessibility The Advent of Smartphone Ready Hearing Aids ools by Tecla mada

- Novel designs for the very young, the elderly, and people with different types of disabilities
- Novel interaction techniques, platforms, metaphors, and devices
- Personalization techniques and personalized products and services
- Smart artifacts, smart cities and smart environments
- Web accessibility

issues, book reviews and letters to the editor, announcements (e.g. conferences, seminars, presentations, exhibitions, education and curricula, awards, new research programs), and commentaries (e.g. about new policies or legislation).

Why publish with us?

Nafath is registered and indexed by DOI. All issues have an ISSN number for online and print version.

To submit a paper please visit:

https://nafath.mada.org.qa/submit-your-paper/ or send it directly to the editors by email to: innovation@mada.org.qa

8

Nafath Issue 21

9

ICT accessibility Research Capacity building in the State of Qatar

ICT accessibility Research Capacity building in the State of Qatar

Dr. Dena Al-Thani Hamad Bin Khalifa University, Qatar The potential of information and communication technology (ICT) to promote economic growth, exradicate poverty, and assist the integration of emerging countries into the global economy has garnered widespread agreement. Accessible ICTs has become an obligation that as is governed by policies and procedures all around the world. Therefore, training the next generation of experts has now strategic aim of governments and

institutes working toward inclusion and sustainable future, there also is a growing consensus that strengthening research capacity requires a concerted effort across multiple institutes. This paper discusses an overview of the ICT accessibility **Research Capacity Building** in the State of Qatar, including a Case Study on Our Experience at HBKU University and Working Together with the Mada Centre.

10

ICT accessibility Research Capacity building in the State of Qatar

Background

The state of Qatar was among the first nations that ratified United Nations CRPD in May 2008, and in April 2015 the state adopted a law on persons with disabilities which covered all the rights contained in the Convention. In its effort to adopt the convention, in 2011 Qatar released the National e-Accessibility Policy [4], which aims to raise the level of accessibility across all digital platforms. Prior to that, in 2009, the Supreme **Council for Information and Communication** Technology established Mada (Qatar Assistive Technology Centre), a non-profit organization dedicated to connecting people with disabilities to information and communication technology. Today, Mada Center is the world's Center of Excellence in digital access in Arabic. Mada's center work is influenced by its core belief that persons with disabilities form an integral part of society and that if they are equipped rightly, they will play a vital role in the growth of Qatar's economy. To pursue this belief, Mada center has built a number of strategic partnerships with entities in Qatar and the world. Through these partnerships, the center works to enable the education, culture, and community sectors through ICT to achieve an inclusive community. Mada center supports technology initiatives in research, training, and innovation through its various program. our research group closely works with the Mada center on a number of initiatives.

Introduction Introduction

In many countries around the world, accessibility has shifted from being merely an option to satisfy the design of Information Communication Technology (ICT) to a moral obligation and policy enforced by law. There are various means and methods to enhance accessibility in an ecosystem, however, the core and most fundamental aspect are to train the people designing and employing these technologies. Article 9 of the Convention on the Rights of Persons with Disabilities (CRPD) [1], in fact, has stressed the importance of providing training for stakeholders on accessibility issues facing persons with disabilities and promoting access to ICT through designing and developing ICTs.

ICT accessibility has started to gain interest in research and academic spheres since the mid-90s when the use of the internet started to take place on the global stage. During that time, the initial developments of guidelines related to web accessibility were the result of efforts by the civil rights of Americans with disabilities, ongoing work on telecommunications accessibility, and growing interest in using the web as the main source of modern-day information [2]. By the end of the 90s, the web accessibility initiative (WAI) of the world wide web consortium (W3C) released the first version of its infamous web content accessibility guidelines (WCAG) 1.0 [3]. This was followed by a number of Governments in the United Kingdom, United States, and Australia to consider accessibility to ICT in their legislation systems by either specifically implementing their own guidelines or by adapting the W3C guidelines. The interest continued to raise as technologies increasingly integrates into our daily lives. In 2008, the CRPD came to light and become the driving force behind many of the accessibilityinitiatives including the teaching and research initiatives in academia, that we have today. Today many renewed research and academic institutes around the world established courses, research groups, and centres that focus on accessibility and assistive technology paving the way to more inclusive societies. In this article, I discuss ICT accessibility Research Capacity building in the State of Qatar, detailing our journey at HBKU university and collaboration with Mada center as a case study. This article is structured as follows; section 2 discusses the background of accessibility practice and research in the state of Qatar; section 3 details how ICT accessibility is integrated into the courses at HBKU; and ICT research training experiences are then discussed in section 4.

Over the past two decades, Qatar has established solid foundations in education and has played a leading role in scientific research across the region, developing a number of worldclass facilities and institutions, including QNRF, the first national institution to finance research on a competitive basis in the Middle East; Qatar, and several research hospitals, including Hamad Medical Corporation, Sidra Medical Center, as well as **Qatar Biobank Medical Research** and Qatar Genome Program. Qatar also has branches of a selection of major international universities, while Qatar University is ranked among the top five universities in the Arab world. At the same time, Qatar has increased the number of local opportunities available for postgraduate degrees through the launch of masters and PDD programs at Hamad Bin Khalifa University (HBKU).

ICT accessibility Research Capacity building in the State of Qatar

13

In 2018, the Qatar Research, Development, and Innovation (QRDI) Council was established. This was a big step forward for Qatar's research, development, and innovation (RDI) agenda [5]. The first thing the Council had to do was come up with a national strategy that would make the best use of RDI activities and help the country reach its overall goals and aspirations. At the end of 2019, the Council launched the Qatar Research, Development, and Innovation Strategy 2030. Capacity building is the heart of the QRDI strategy thriving a knowledge-based society.

Our research group is based at HBKU, a member of the Qatar Foundation. HBKU was founded in 2010 as a research-intensive university that acts as a catalyst for transformative change in Qatar and the region while having a global impact. In our research group, which was founded in 2016 at HBKU, we believe each of us must play an active role in supporting access and use of technology. Designing technologies that suit different abilities and ages is critical in allowing individuals to achieve a smooth and undiminished ICT interaction. The aim is for this interaction to reach optimal levels of performance. Our research group is interested in addressing the issue of designing a comprehensive user experience and accessibility to create a more inclusive community in Qatar and the world. The group, therefore, experiments and design human-centered technologies that are sensitive to use in various contexts including education and health. To achieve this, we collaborate with world-renowned centres and experts in the field, engage with users with disabilities to understand their needs, design human-centered technologies by taking advantage of modern technological developments and artificial intelligence, and train the next generation of highly skilled researchers.

Research capacity building is referred to as "a process of developing sustainable abilities and skills enabling individuals and organizations to perform high-quality research" [6] In many research intuitions focus on capacity building as one of their most important pillars and tools of development and continuity. In the HBKU 2016-2026 strategic plan [7] capacity building is in its core four pillars. Mada's mission implies that is aiming Unlock the potential of persons with functional limitations (PFLs), persons with disabilities (PWDs), and the elderly – through enabling ICT accessible capabilities and platforms [8].

ICT accessibility Research Capacity

Training

The aim of research capacity building is to strengthen the existing workforce with skills that will widen their understanding [6]. Through this, they are able to contribute to the development of high-quality research that improves their field's understanding, persuades funding authorities, and makes evidence-based practice possible. That is in addition, to enhancing practices currently taking place.

ICT accessibility Research Capacity building in the State of Qatar

14

Training includes offerings a course on ICT accessibility in the Bachelor of Computer Programming and Engineering Course, embedding ICT accessibility, Universal Design, and Inclusive design fundamental in a Human-computer Interaction elective course offered for the master's and Ph.D. students at the College of Sciences and Engineering at HBKU, and engaging research student in active research grants related to accessibility, digital inclusion, and assistive technology. In the ICT accessibility, the Mada Accessibility and Inclusive Design Competency framework [9] was used to design and prepare the course outline. The course focuses on enhancing the student's capabilities in the domain of ICT accessibility. It provides a comprehensive review by covering diverse topics that advance the skills needed to develop, review and evaluate accessible digital platforms according to the international best practices and ICT accessibility standards. When completing the course the students will be able to understand the definition and the importance of ICT accessibility, develop accessible websites and Mobile applications including the creation of accessible digital content such as multimedia, and evaluate the level of accessibility of digital platforms, such as website, Mobile application and electronic kiosks, identify the uses of assistive technology, and demonstrate the application of universal and inclusive design principles in the development of user-center technology. During the course, the student gets the opportunity to visit Mada Center and its innovation lab, interact with the team, and know more about the work taking place in Mada. The course also involved students working on innovative projects addressing pressing accessibility problems. The students were engaged and should a real interest in the subject. In fact, a number of them express their interest in engaging in ongoing accessibility research in HBKU and Mada.

To build capacity on the research level, I offer a class on accessibility and inclusive design in collaboration with Mada Center As part of its Interactive Design for Healthcare course. In this class students who register in the course attend a workshop on digital accessibility at Mada – Qatar Assistive Technology Center. The workshop at Mada enhanced participants' learning experience, providing them with opportunities to engage with real-world applications and technologies. The workshop, entitled Introduction to Digital Accessibility, stressed the importance of inclusiveness and accessibility in technologyrelated innovations.

Nafath Issue 21

15

Research experience

When looking at my research work, it becomes evident that I have had a focus on supporting Providing research experience is a crucial part the design of inclusive technologies for people of capacity building in a university setting. HBKU with autism spectrum disorder (ASD). There are is a research-intensive university in which most a number of reasons for pursuing this research of its programs are at the graduate level. Thus, direction. Firstly, the incidence of ASD has research training is given the highest priority. increased significantly in the United States of In our research group at HBKU, we work on a America, as reported by the Center for Disease number of projects related to accessibility and Control and Prevention (CDC). The increase in the inclusive design in collaboration with the Mada number of children diagnosed with ASD is not Center. We also have a number of partnerships limited to the USA, but is a global trend, including with local centers in Qatar such as Shafallah in Qatar. A recent study by the Qatar Biomedical Center for Persons with Disabilities, Center of Research Institute (QBRI) has found that one in 56 Empowerment and Care of the Elderly (Ehsan), boys and one in 230 girls have been diagnosed Step by Step Center for Special Educational with ASD in Qatar. The experience of families who Needs, and iSpeak Rehabilitation Center. We have children with ASD shows that the children have a number of international collaborations require a great deal of support from the parents with research institutes and non-governmental and siblings, relatives, and friends. Sometimes, organizations around the work such as Texas A the support needed by children with ASD spans and M University, University of Bristol, University from childhood to adulthood, which is usually of Ottawa, Autism Speaks, the National Autism overwhelming and psychologically challenging. Society in the United Kingdom, and Age-Well Thus, one of Qatar's 2030 visions is to meet the in Canada. Most of the research projects we needs of individuals with special needs regarding currently work on are funded by the Qatar National development rights. This vision emphasizes Research Fund, Mada center, HBKU College of Article 24 of the UN Convention on the Rights of Science and Engineering, and HBKU innovation Persons with Disabilities, which recognizes the fund. Master's, Ph.D., research assistants, and right of persons with disabilities to education and postdoctoral fellows are hired in the projects to opportunities without discrimination. Intellectual work alongside the Principal Investigators from disabilities, such as ASD, have remained the both Mada and HBKU. They would be engaged in most significant proportion of disabilities over the different phases of research from ideations the past decade in Qatar. Within this pillar, to data gathering, analysis, and dissemination. have four active projects. The research in this Two Ph.D. and three master's students working in pillar received several grants for projects in areas related to inclusive design and accessibility which I am a Lead PI. These grants are: (1) idea have so far graduated from the team. We currently development from Hamad bin Khalifa Innovation have 12 research team members in our group Centre, (2) QNRF NPRP13S-0108-200027, (3) QNRF working on a number of active research grants PDRA6-0611-20012, (4) QNRF RRC-3-010, and (5) that focus on technology design for the elderly. NPRP10-0208-170408. I also received in-cash children with autism, and inclusion. The team funds from Mada Assistive Technology Center actively publishes in reputable research venues and Shafallah Center. and top-tier journals in the field of accessibility and human-computer interaction. The team also received a number of patents and is looking into the opportunity of technology transfer to feed into the innovation ecosystem in Qatar and the world.

16

ICT accessibility Research Capacity building in the State of Qatar

building in the State of Qatar

17

Children with ASD are characterized by attention deficit and exhibit a range of attentional behaviours due to heterogeneity in the spectrum. The current state-of-the-art states that engagement assessment in ASD happens through subjective methods, requiring a long year of experience [10]. Our previous review [11] shows that researchers often focus on how technology innovations can improve the engagement level of children with ASD. However, the application of this technology for engagement assessment is still in its infancy. The commonly applied method is based on subjective evaluation, which requires high expertise and is time-consuming. However, few studies have explored objective assessment of engagement levels during learning by utilizing existing sensing technologies for typically developing individuals. Those few engagement assessments conducted to date are based on evaluating generalized attention, which is not suitable for children with ASD due to their heterogeneity. Our group applied a personalized engagement assessment that captures visual, auditory, and social attention for children with ASD during learning. Our study explored the effect of social and non-social visual stimuli on the attention of children with ASD and typically developing (TD) children in a simulated virtual classroom [12][13]. Using a webcam and eye-tracking, forty-six participants (ASD = 20, TD = 26) took part in a series of attention tests, in which social and non-social visual stimuli were used as target stimuli [14][15]. We proposed a face-based attention recognition model using two methods [16]. We showed that the geometric feature transformation [17] using an SVM classifier outperforms the CNN approach, emphasizing that the attention features are more generalizable in the TD group.

Our recent AR [18] review shows that researchers have targeted several skills related to ASD in the studies. However, the teaching of vocabulary or language is still underexplored despite its importance in academics. Working closely with local stakeholders (parents and their children, teachers, and centers), we conducted a detailed qualitative study to ascertain and understand their needs [19]. As a result, an AR app was developed using collected requirements in the classroom and at home. The app was then evaluated using a participatory approach [20]. Through feedback received from our sessions with teachers, we incorporated the concept of mixed reality into the app. Children with ASD can benefit from the app by regularly connecting with their teachers and performing a set of tasks within the app environment. However, in the absence of a teacher, a 3D humanoid talkative avatar would support a child and parents in a virtual environment. To the best of our knowledge, there is no educational platform that caters to the needs of children with ASD. The platform allows parents and teachers to view a child's performance, and teachers can create lesson plans according to the child's needs. The AR app would benefit children with ASD as it would allow them to become independent individuals and live better lives. The application will be available on the Apple app store, by the name of MARVoc, and it is now being used at Shafallah Center, which is a center that provides educational support for children Intellectual disabilities and mental disabilities associated with motor disability, ASD, and its spectrum.

In the realm of web accessibility for the blind, we investigated ways of generating overview web search results [21][22]. We amended these different approaches in a search engine which we called InteractSE. This search engine uses Formal Concept Analysis (FCA) to generate an overview of search results. InteractSE was evaluated with 16 users [23] and five HCl experts [24], showing a significant improvement in search efficiency and individual user experience for VI web users. The team continues to work on research projects related to accessibility and looking for aspiring scientists to join this journey. Our future research plan aims to strengthen and develop a local research team in the area of ICT accessibility.

Conclusion

Building research capacity can be targeted on three different levels, including foundational training on the topic of accessibility and the initial introduction of research in this field (such as understanding how to search, evaluate, and consciously apply research evidence to inform practice), active participation and gaining the research experience (such as assisting designing the research, and participating in the data collection and analysis), and finally leading research grants in this area. Building research capacity can be targeted on all three levels simultaneously. The collaboration between Mada and HBKU has gone a long way with a number of ongoing projects, and courses taught on both undergraduate and graduate levels. We hope that this fruitful is shared with institutes around the region to work towards building a strong foundation for ICT accessibility both in research and practice.

References

- Convention on the Rights of Persons with Disabilities (CRPD) https://www.un.org/ development/desa/disabilities/conventionon-the-rights-of-persons-with-disabilities. html
- Ellcessor, E. (2010). Bridging disability divides: A critical history of web content accessibility through 2001. Information, Communication & Society, 13(3), 289–308.
- Web Content Accessibility Guidelines 1.0 https://www.w3.org/TR/WAI-WEBCONTENT/
- Qatar's e-Accessibility Policy https://www. motc.gov.qa/en/documents/document/ qatar%E2%80%99s-e-accessibility policy#:~:text=The%20policy%20 aims%20to%20ensure,assistive%20 technologies%20and%20digital%20 content.
- 5. RDI Legacy https://qrdi.org.qa/en-us/ Aboutus#QRDI-2030-Development-&-Implementation
- Holden L, Pager S, Golenko X, Ware RS. Validation of the research capacity and culture (RCC) tool: measuring RCC at individual, team, and organisation levels. Aust J Prim Health. 2012;18(1):62–7.
- Hamad Bin Khalifa University Strategic Plan 2016 – 2026 https://www.hbku.edu. qa/sites/default/files/hbku_strategic_ plan_2016_-_2026.pdf
- 8. Mada digital access to all https://mada.org. qa/about-us/
- Mada ICT-AID (ICT Accessibility and Inclusive Design) Competency Framework https://aiaeg.mada.org.qa/membercategory/mada-ict-aid-ict-accessibilityand-inclusive-design-competencyframework/

- Banire, B., Al Thani, D. and Qaraqe, M. (2021) Informing the Design of Attention Assessment System for Children With Autism Spectrum Disorder: A Thematic Analysis Approach. Submitted to the 8th International Conference on ICT and Accessibility (ICTA'21), held online.
- 11. Banire, B., Al Thani, D., Qaraqe, M., Mansour, B. (2017) A Systematic Review: Attention Assessment of Virtual Reality Based Intervention for Learning in Children with Autism Spectrum Disorder. In the 7th IEEE International Conference on Control Systems, Computing, and Engineering (ICCSCE2017).
- Banire, B., Al Thani, D., & Qaraqe, M. (2020). Validation of Emotions as a Measure of Selective Attention in Children with Autism Spectrum Disorder. Proceedings of the 2020 9th International Conference on Educational and Information Technology, 205–210.
- Banire, B., Al Thani, D., Makki, M., Qaraqe, M., Anand, K., Connor, O., Mansoor, B. (2019). Attention Assessment: Evaluation of Facial Expressions of Children with Autism Spectrum Disorder. In M. Antona & C. Stephanidis (Eds.), Universal Access in Human-Computer Interaction. Multimodality and Assistive Environments (pp. 32–48). Springer International Publishing.
- 14. Banire, B., Al Thani, D., Qaraqe, M., Mansoor, B., & Makki, M. (2020). Impact of mainstream classroom setting on attention of children with autism spectrum disorder: An eye-tracking study. Universal Access in the Information Society, 1–11
- Banire, B., Al-Thani, D., Qaraqe, M., Khowaja, K., & Mansoor, B. (2020). The Effects of Visual Stimuli on Attention in Children With Autism Spectrum Disorder: An Eye-Tracking Study. IEEE Access, 8, 225663–225674

Nafath Issue 21

19

- 16. Banire, B., Al Thani, D., Qaraqe, M., & Mansoor, B. (2021). Face-Based Attention Recognition Model for Children with Autism Spectrum Disorder. Journal of Healthcare Informatics Research. https:// doi.org/10.1007/s41666-021-00101-y
- 17. Banire, B., Al-Thani, D., Qaraqe, M., & Mansoor, B. (2021). Detecting visual attention of children with autism spectrum disorder (United States Patent No. US20210256249A1). https://patents. google.com/patent/US20210256249A1/en
- Khowaja, K., Banire, B., Al-Thani, D., Sqalli, M. T., Aqle, A., Shah, A., & Salim, S. S. (2020). Augmented reality for learning of children and adolescents with autism spectrum disorder (ASD): A systematic review. IEEE Access, 8, 78779–78807
- 19. Khowaja, K., Al-Thani, D., Hassan, A. O., Shah, A., & Salim, S. S. (2020). Mobile Augmented Reality App for Children with Autism Spectrum Disorder (ASD) to Learn Vocabulary (MARVoc): From the Requirement Gathering to Its Initial Evaluation. International Conference on Human-Computer Interaction, 424–437
- 20. Khowaja, K., Al-Thani, D., Abdelaal, Y., Hassan, A.O., Mou, Y.A., Hijab, M.H. (2021). Towards the Mixed-Reality Platform for the Learning of Children with Autism Spectrum Disorder (ASD): A Case Study in Qatar. In: Fang, X. (eds) HCI in Games: Serious and Immersive Games. HCII 2021. Lecture Notes in Computer Science (), vol 12790. Springer, Cham. https://doi. org/10.1007/978-3-030-77414-1_24
- 21. Aqle, A., Al Thani, D., Jaoua, A., (2017) Analyze Unstructured Data Patterns for Conceptual Representation, In the 2017 International Conference on Computational Science and Computational Intelligence (CSCI'17).

- 22. Aqle, A., Al-Thani, D., & Jaoua, A. (2018). Conceptual Interactive Search Engine Interface for Visually Impaired Web Users. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 1–6. https://doi. org/10.1109/AICCSA.2018.8612874
- 23. Aqle, A., Al-Thani, D., & Jaoua, A. (2020). Can search result summaries enhance the web search efficiency and experiences of the visually impaired users? Universal Access in the Information Society, 1–22
- 24. Aqle, A., Khowaja, K., and Al-Thani, D.,
 (2020) Preliminary Evaluation of Interactive Search Engine Interface for Visually Impaired Users. IEEE Access, vol. 8, pp. 45061-45070, 2020

20

Nafath Issue 21

21

Capacity Building and Advocacy to **Promote the Digital Accessibility Rights** of Persons with **Disabilities**

Mohammed Ali Loutfy

The Global Initiative for Inclusive Information and Communication Technology (G3ICT) Digital Accessibility Rights Education - DARE Academy

Capacity Building and Advocacy to Promote the **Digital Accessibility Rights of Persons with Disabilities**

Despite the progress that has taken place in the sector of technology, efforts of ensuring the inclusion of persons with disabilities remain limited. This is due to the limited opportunities of capacity building, weak awareness among engineers and industrialists, and the hindering of persons with disabilities' voices in Information and Communication Technology (ICT) policy development and decision-making.

Inspired by the disposition of the Convention on the Rights of Persons with disabilities regarding accessibility, the Global Initiative for Information and Communication Technologies have been playing a pivotal role in promoting the persons with disabilities' right to inclusive ICTs. Benefiting from the results of its Digital Accessibility Right Evaluation Index, G3ICT has realized the increasing commitment of CRPD States Parties to issues of ICT Accessibility. Nevertheless, The DARE index data show the remaining challenges encountered by governments' procurement capacity for offering actual support to inclusive ICT programs, products, and services. ICT accessibility continues to be absent from higher education and vocational training programs. Furthermore, advocacy efforts of persons with disabilities and their organizations remain limited within the realm of digital accessibility.

This paper discusses G3ICT's Digital Accessibility Right Education (DARE) Academy, and its role in tackling issues of digital divide through offering a platform of educational development and advocacy capacity enhancement for persons with disabilities around issues of ICT accessibility.

Capacity Building and Advocacy to Promote the Digital Accessibility Rights of Persons with Disabilities

22

This essay presents the background and motivation behind the creation of the G3ICT DARE Academy. The following Paragraphs will offer an overview about the Academy's main programs that are aimed to help the enhancement of inclusion of persons with disabilities in the field of digital accessibility and its related policies and programs.

Background

The [1] recognizes the right of persons with disabilities to accessible physical, digital or technological environments. Many convention articles address this right in relationship with different sectors and life aspects. While Article 9 of the convention sets forth the primary components of accessibility as a core principle, other articles of the convention highlight the position of ICT accessibility in relevance to other rights, inter alia: access to justice (article 13), independent living (article 19), freedom of expression and access to information (article 21), education (article 24), employment (article 27), political participation (article 29), and access to cultural material, programs, and facilities (article 30). The convention also realizes that ensuring the right of persons with disabilities to accessibility should be recognized through rather operational mechanisms pertaining to CRPD implementation monitoring and evaluation. Such mechanisms should also take into account the principle of accessibility, particularly through data collection and desegregation by disability, as well as the enhancement of international efforts of multilateral partnerships.

The establishment of this disposition has taken place in a timely manner, given the critical progress done in the field of technology, particularly digital accessibility. Such progress has been reflected through the development of technology dependent practices, such smart cities, e-governance, e-learning, remote employment etc.

As the world is shifting towards increasing reliance on technology, persons with disabilities remain left behind on many levels in terms of ensuring their accessible technology rights. States Parties compliance with the CRPD disposition on accessible technology remains limited to the commitment level i.e., the deployment of relevant legislations, regulations, and policies, as G3ICT DARE index shows. According to this Index, level of implementation capacity of States Parties in the arena of digital accessibility continues to be lagging behind. This matter significantly appears in areas, such as engaging persons with disabilities in decisionmaking around issues of digital accessibility. Another rather important area, where implementation capacity seems to be lagging behind, is the integration of special curriculum on digital accessibility in both academic and vocational training courses of computer sciences and programming and so on and so forth.

These two examples of areas of implementation capacity by States Parties reflect the perpetual exclusion of voices of persons with disabilities on the level of decision-making in national policy development regarding accessible technology. Furthermore, it rather questions the availability of capacity building opportunities for technology professionals, and primarily for persons with disabilities who are interested in technology. While these two factors would surely result in hindering persons with disabilities' chances of inclusion in technology dependent platforms and programs, it shall also have negative implications on persons with disabilities knowledge and advocacy capacity pertaining to issues of ICT accessibility on the national, regional, and global levels.

Nafath Issue 21

23

Why is the DARE Academy?

Sponsored by G3ICT, this scholarship is Based on its mission towards promoting the CRPD disposition on digital accessibility rights dedicated for all persons with disabilities for persons with disabilities, and supported by interested and active in the field of digital its [2] data, [2] has been aware of the problem accessibility. With the priority given to persons of lacking opportunities of capacity building with disabilities of countries of emerging and enhanced advocacy efforts by persons economies, and affiliated to representative with disabilities around issues of digital organizations of persons with disabilities, this accessibility. On June 14th, 2021, at its virtual scholarship allows candidates to have free side event during the [3] held by the United access to G3ICT International Association for Nations Department of Economic and Social Accessibility Professional's (IAAP) Certification Affairs (UNDESA), G3ICT launched its [4]. In for Professional Accessibility Core Competency preparation of this launch, G3ICT reached out (CPACC). This certification program is offered to major international organizations of persons in partnership with Princeton University in with disabilities, including: International the United States. The free Access to CPACC Disability Alliance (IDA), Disabled People's covered by the DARE Academy Scholarship International (DPI), World Blind Union (WBU), entails that have access to the certification Course's body of knowledge and examination World Federation of the Deaf (WDF), European Union of Persons with Hard of Hearing, process. in addition to disability and development organizations, including CBM Global Disability The scholarship, so far, has been granted to Inclusion, Leonard Cheshire, and Daisy forty candidates, who have been selected Consortium. These organizations today form according to a rigorous application process, G3ICT DARE Academy Advisory Council. and the approval of the members of

To help filling the gap in programs of ability building and advocacy in the field of digital accessibility, G3ICT DARE Academy aimed at offering persons with disabilities a number of opportunities. Given its educational mission, DARE academy has been formed to provide means of capacity building for persons with disabilities around issues of digital accessibility. These means are primarily reflected through the Academy Scholarship program and online courses. To ensure that the knowledge gained through the scholarship program is going to be useful for potential candidates, the Academy strives to bring digital accessibility leaders and champions of persons with disabilities together through a global advocacy and peer-to-peer sharing of expertise network.

Capacity Building and Advocacy to Promote the **Digital Accessibility Rights of Persons with Disabilities**

DARE Academy Scholarship

the Academy's Advisory Council. These scholarship recipients compromise two application cycles, with one year timeframe each. The first cycle was started in September 2021, while the second cycle was started in December of the same year. During this one year, each recipient is anticipated to access and study the CPACC body of knowledge and take and pass the CPACC exam. Upon their acceptance into the scholarship program, each student is granted a one-year IAAP membership. This membership will enable each student to have access to a broad network of accessibility professionals around the world and take advantage of IAAP online seminar series on different digital accessibility topics and issues.

24

Capacity Building and Advocacy to Promote the Digital Accessibility Rights of Persons with Disabilities

Nafath Issue 21

25

Acknowledgment

The author of this paper thanks the leadership of the Global Initiative for Information and Communication Technologies (G3ICT), and the International Association of Accessibility Professionals (IAAP) for its support to launching an important program of the DARE Academy. He also thanks the staff members of the DARE Academy on their excellent support for putting this paper together. References

DARE Academy Online Course on **Digital Accessibility Best Practices**

In addition to its scholarship program, DARE Academy is preparing the launch of an online course featuring digital accessibility best practices. These featured best practices will be disabilities through inclusion on all levels. selected based on the series of responses and data collected through G3ICT DARE Index. This online course will host experts, professionals, and leaders in the field of digital accessibility who will form each course session panelists or lecturers. The identification of course subjects will take into consideration the DARE Index set of variables and will take advantage of the extensive knowledge resources owned by G3ICT. Course sessions will be recorded and archived for future by demand access. While this course will require paid registration, DARE Academy Students will be granted free access to course sessions and archived materials.

Global Network for Digital Accessibility Champions

The Academy alumni and program participants constitute a global network that brings together persons with disabilities who have leadership roles at organizations of person with disabilities, particularly those that are active in the field of digital accessibility. This network aims at creating a space for these leaders to share their expertise and enjoy peer-to-peer support around issues of digital accessibility rights. This network is an open platform for leveraging advocacy efforts of these leaders, and to enhance their voices towards their governments and other digital accessibility stakeholders on the local, national, regional, and global levels. DARE Academy scholarship recipients are granted automatic membership in this network upon their graduation with their CPACC certificate.

Conclusion

As a pioneer initiative by G3ICT, the DARE Academy will hopefully be an aid to those who believe in the role of digital accessibility in transforming the lives of persons with Therefore, G3iCT hopes that this Academy will become a hub of knowledge and capacity building to help voices for persons with disabilities will be further heard at digital accessibility platforms of decision-making, and skills of persons with disabilities to be recognized for ensuring their participation and inclusion in society at all levels.

References

 \bigcirc

- 1. Convention on the Rights of Persons with Disabilities (CRPD), United Nations, https://www.un.org/development/desa/ disabilities/convention-on-the-rights-ofpersons-with-disabilities/convention-onthe-rights-of-persons-with-disabilities-2. html
- 2. Digital Accessibility Rights Evaluation (DARE) Index, G3ict, https://g3ict.org/ digital-accessibility-rights-evaluationindex/
- 3. G3ict at the 14th session of the Conference of States Parties to the Convention on the Rights of Persons with Disabilities (CRPD), G3ict, 14 June 2021, https://g3ict.org/ events/the-14th-conference-of-statesparties-to-the-convention-on-the-rightsof-persons-with-disabilities-cosp14
- 4. Digital Accessibility Rights Education Academy, G3ict, https://g3ict.org/dare_ academy/about-the-dare-academy

26

Inclusion of STEAM Innovation **Spaces** A Critical Issue for Learners with **Disabilities**

The fourth industrial revolution has provided a wide range of flexible physical and digital technologies that continue to enhance the teaching and learning of STEAM. Incorporating STEAM and building makerspaces, Fablabs (Fabrication Labs), and STEAM labs as part of the educational curriculum can serve as the right environment to empower learners to transform their ideas into tangible digital or physical solutions. However, the standards way of development of spaces such as FabLabs does not always guarantee accessible learning opportunities for learners with disabilities as they may require additional accommodations to be able to access and use the technology tools. This article confirms that children with disabilities face multiple challenges with inclusivity and accessibility. Creating inclusive innovation spaces that support, promote, and accelerate learning is essential and requires an understanding of the application of user-centered design, universal design, and utilization of local and global networks to create solutions that increase accessibility and create an inclusive environment.

Nafath Issue 21

27

Introduction

According to a recent UNICEF report, it is estimated that there are 240 million children globally who suffer from a form of disability [1]. This report confirms that children with disabilities face multiple challenges with inclusivity and accessibility. Education is the most imperative subject when it comes to children's development, yet learners with disability are still falling behind as inclusive learning environments are not the norm in modern society.

Einas Fathelrahman Mohamed Ibtechar Digital Solutions

Inclusion of STEAM Innovation Spaces A Critical Issue for Learners with Disabilities

STEAM is one of the most popular and fast-growing topics in the education industry. This is due to its unique approach and emphasis on innovation, problem-solving, and critical thinking. STEAM education stands out from other learning paths as it is centered around the individual's learning capability and interest which therefore provides an inclusive and accessible learning environment for students with varying abilities. This approach helps students develop 21st-century skills that are necessary to bridge the skills gap for future jobs. Unquestionably, access to STEAM education should be adopted by society, especially to students with disabilities as it possesses the right tools, and environment that empowers the individual to strive in education.

Did you know that the late CEO of Apple, Steve Jobs, and the founder of Virgin Group Richard Branson both had learning disorders growing up? Individuals with disabilities have greatly contributed to our world in STEAM fields. An example would be Kursat Ceylan who is a visually impaired engineer since birth. Kursat invented a smart cane that improves mobility for visually impaired individuals and is currently the co-founder of the WeWalk

Inclusion of STEAM Innovation Spaces A Critical Issue for Learners with Disabilities

28

Cane as well as being the CEO of the Young Guru Academy which is an international nonprofit established to empower volunteers to develop projects that tackle challenges within their communities [2]. This indicates that students with disabilities or different abilities, can all get empowered by STEAM education and therefore contribute to society with products and services that develop different STEAM-driven fields such as Assistive Technologies.

Technology has been identified as the bridge between all the core subjects of science, engineering, arts, and mathematics and is very focused in STEAM learning environments. The fourth industrial revolution has provided a range of flexible physical and digital technologies that continue to enhance the teaching and learning of STEAM. Incorporating STEAM and building makerspaces, Fablabs (Fabrication Labs), and STEAM labs as part of the educational curriculum can serve as the right environment to empower learners to transform their ideas into tangible digital or physical solutions. These kinds of spaces are mainly developed with the purpose of creating accessibility within the community for fields such as manufacturing and makers technologies. Making spaces accessible and accommodating to individuals with different abilities and capabilities is important.

However, the regular development of spaces such as Fablabs in many countries somewhat follows a "One size fit all" approach in terms of design and build which does not guarantee to provide accessible learning opportunities for learners with disabilities as they may require additional accommodations to be able to access and use the technology tools. Hence, there have been recent efforts toward building an awareness of the requirement of building an accessible innovation space. The University of Washington conducted research in 2018 in which individuals with diverse disabilities participated in a series of activities to brainstorm means to make makerspaces more accessible and user friendly. Subsequently, the research concluded with a set of recommendations that can be considered when developing a makerspace that can be accessible to all [3]. Some of these recommendations revolve around the policy planning, space design, equipment, safety, training, and user testing [4] [5].

Simultaneously, Ibtechar Digital Solutions (a Qatari innovation consultancy and management firm) developed a unique approach towards creating the 'world's first' inclusive Fablab "Mada FabLab" which was designed with careful consideration to ensure the lab can be accessed and used by individuals with various abilities. The space layout is easily navigable, the furniture was locally fabricated to be customizable and adjustable to fully accommodate the different users. In addition, the technology equipment stations were designed to be accessed by different individuals while also ensuring that the technologies selected are user friendly. Most importantly, the staff were trained on how to utilize the furniture and the technology equipment to create inclusive learning experiences.

As a result, Ibtechar developed "Mini Fablabs" which is a local, economic, and accessible solution that can be used by any institution that would like to create an innovation space. It consists of a customizable mobile furniture unit that can be equipped with any technology equipment, basic tools, and materials. In the context of education, more institutions are adopting the STEAM education approach which greatly relies on having the right setting or environment. Yet, building a Fablab or a makerspace in an established educational building may require assigning Nafath Issue 21

29

an appropriate space, extensive remodeling of existing infrastructure and many more constraints. Therefore, the Mini Fablab is a turnkey solution that can be utilized to empower the teaching of STEAM and can be easily customized to provide accessibility to all individuals with various abilities creating an environment that is empowering and inclusive.

Conclusion

In summary, research, evidence, and experience clearly prove that inclusivity and accessibility should be considered when it comes to providing quality and inclusive education for children as it gives value to the contributions of all students regardless of their abilities. Creating inclusive innovation spaces that support, promote, and accelerate learning is essential and requires an understanding of the application of usercentered design, universal design, and utilization of local and global networks to create solutions that increase accessibility and create an inclusive environment.

References

- Nearly 240 million children with disabilities around the world, UNICEF's most comprehensive statistical analysis finds. (2021, November 9). [Press release]. https://www.unicef.org/pressreleases/nearly-240-million-childrendisabilities-around-world-unicefs-mostcomprehensive#:%7E:text=NEW%20 YORK%2C%2010%20November%20 2021,%2Dbeing%2C%20the%20report%20 says.
- Puente, A. (2021, May 20). WeWalk smart cane gives blind users access to Google Maps. The Daily Dot. Retrieved July 7, 2022, from https://www.dailydot.com/debug/ wewalk-smart-cane-google-maps/
- Steele, K. M., Blaser, B., & Cakmak, M. (2018). Accessible Making: Designing Makerspaces for Accessibility. International Journal of Designs for Learning, 9(1), 114–121. https://doi.org/10.14434/ijdl. v9i1.22648
- 4. AccessEngineering. (2015). Making a Makerspace? Guidelines for Accessibility and Universal Design. Seattle, WA: University of Washington. Retrieved from https://www.washington.edu/doit/sites/ default/files/atoms/files/Making_a_ Makerspace_8_03_15.pdf
- Moon, N. W., Todd, R. L., Morton, D. L., & Ivey, E. (2012). Accommodating students with disabilities in science, technology, engineering, and mathematics (STEM). Atlanta, GA: Center for Assistive Technology and Environmental Access, Georgia Institute of Technology.

Promoting **ICT-AID** aligned open educational resources **OER** for all

Recognizing the pivotal role that Open Educational aligned educational and training materials to help Resources OERi have, providing equally effective access to learning opportunities for all, Mada has and accessing appropriate OER related to ICT joined the growing worldwide OER movement and accessibility. In that vein, Mada ICT Accessibility pledges as such to promote OER accessibility harnessing the power of inclusive ICTs so that educational resources are accessible for all.

With this in view. Mada launches the "Mada ICT-AID OER Hub"¹ to be a Global knowledge hub featuring freely accessible resources toward closing the training and knowledge gap in ICT Accessibility.

Mada Hub contains collections of accessible open educational resources, which are aligned to the globally learners and educators. "Mada ICT Accessibility and Inclusive Design (ICT-AID) Competency Framework"². These resources 1 https://oer.mada.org.ga/ are aggregated, curated and managed by Mada and partners, through collections, and groups, and development tools available on the Hub.

The community of ICT accessibility professionals, experts, advocates, educators, and learners can discover, create, and share accessible guality open content, and connect with others to expand their capabilities and improve inclusive practices. The Mada ICT-AID OER Hub is meant to be a by others". centralized and searchable repository of ICT-AID

the community in Qatar and beyond, locating and Inclusive Design competency framework is featured as a standard available to users of the OER Commons³ digital library and collaboration platform. As a standard, Mada ICT-AID will be used to index and describe ICT-AID aligned OER providing accordingly ease of access and retrieval of these resources. As such, the ICT-AID competency framework will be used for searching, aligning and evaluating Open Educational Resources published on the Mada ICT-AID OER Hub, serving

- 2 https://ictaid.mada.org.ga/
- 3 https://www.oercommons.org/

iOpen Educational resources (OER) are "learning, teaching and research materials in any format and medium that reside in the public domain or are under copyright that have been released under an open license, that permit no-cost access, reuse, re-purpose, adaptation and redistribution

infuse Do you h an idea to impact the lives of **Persons** with **Disabilities?**

'ION

Mada Innovation Program

Endorsement Program Direct Grants Competitions Localization

Entrepreneurs

Innovators

Apply Now!

mip.mada.org.qa

Mohamed Koutheair Khribi Mada Center

The Information and Communication Technologies ICT -evolving into an integral part of everyday life, shapes profound changes in our societies. Consequently, everyone should access ICT in the same way as everyone else, which means that ICT should be accessible to everyone, regardless of his/her abilities, needs, or disabilities. This calls, among other effective measures, for developing skills in ICT accessibility, which includes a shared understanding of ICT accessibility and Inclusive Design ICT-AID, as well as acquiring necessary digital accessibility competencies for everyday life and work. Nevertheless, selecting appropriate accessible training and education materials aligned with specific ICT-AID competencies, especially in the Arabic language, remains a barrier to all, inhibiting aspirations and willingness to build capability and proficiency in ICT accessibility. This paper presents Mada ICT Accessibility and Inclusive Design ICT-AID Competency Framework, encompassing all core competencies required to effectively integrate ICT accessibility principles into training and educational curricula toward closing the training and knowledge gap in this field.

Mada ICT Accessibility and Inclusive Design **ICT-AID** Competency Framework

Nafath Issue 21

33

A wide range of challenges and barriers confront Nonetheless, ICT-AID topics tend to be people with disabilities and the elderly [1], especially underrepresented in training and educational in the field of Information and Communication curricula specifically in the Arab region [5]. In Technologies (ICT), reducing their access to various addition, the availability of accessible digital online services, educational, and employment educational content appropriate for different opportunities [2]. Under such circumstances, there learning contexts and proficiency levels remains far is a growing global recognition that accessibility short of expectations[6] [7]. This will undoubtedly is essential for individuals and organizations to lead to a lack of knowledge, and awareness, and help remove barriers hindering access to ICT expertise about developing accessible contents and create high-quality products and services and services, contrary to what was stated in UN universally accessible and usable by a broad conventions. It is therefore extremely important to range of users [3]. Undoubtedly, ICTs play a spread knowledge and awareness, and to develop crucial role in bridging the digital divide and skills around ICT accessibility, particularly, fostering the development of inclusive Knowledge through fostering the integration of ICT-AID Societies, as was highlighted in the 2030 Agenda aligned courses in educational institutions and for Sustainable Development Goals SDG. On that professional development services. premise, the United Nations member states have been required to implement the 2030 Agenda [4] This paper presents Mada ICT accessibility and and facilitate therefore access to ICT for persons inclusive design ICT-AID competency framework with disabilities. Furthermore, according to the defining a set of coherent relevant competencies United Nations Convention on the Rights of Persons in the ICT accessibility and inclusive design field, with Disabilities UNCRPD. access to information intended to serve as a training, and learning and communication technologies, emergency guide on the foundation in ICT accessibility and services, and the Internet is recognized as a inclusive design [8]. The remainder of this paper fundamental human right. As such, signatory is organized as follows: Section II investigates states are obliged to take appropriate measures existing educational programs in ICT accessibility to allow people with disabilities access to these and discusses the need for a competency model services equitably and invest more in providing as an instrument to guide training and learning in ICT products and services meeting their needs and this sector. After this, section III describes Mada requirements [3]. In particular, leveraging inclusive ICT-AID competency framework. Section IV then ICTs in education as well as integrating ICT presents some results from a 2-round Delphi accessibility within the capacity building, training, validation method of the proposed framework. and education curricula and programs can enable Then, Section VI explores some of the ICT-AID use all persons, including persons with disabilities, cases by Mada partners so far in Qatar. Lastly, to access equitably to learning opportunities Section V concludes the paper and suggests and to gain the necessary ICT accessibility and ways forward. inclusive design ICT-AID competencies required for life and work.

Mada ICT Accessibility and Inclusive **Design ICT-AID Competency Framework**

Developing ICT accessibility capabilities

As per Article 9 of the Convention on the Rights of Persons with Disabilities, states parties are required to take appropriate measures to enhance accessibility as well as to promote inclusive ICT use and access at a minimum cost [3]. Various surveys have shown that the lack of ICT accessibility skills represents a serious stumbling block to implementing accessibility on digital products, and contents, and services [9] [10]. In response, many organizations and educational and training institutions have rushed to offer capacity building and training programs aligned to their own knowledge and understanding of ICT accessibility [11][12] [13]. Among the most important, the World Wide Web Consortium W3C Web Accessibility Initiative WAI has provided the community with training materials to support individuals understanding and implementing accessibility [14]. The W3C WAI has also developed a curriculum on Web accessibility to be used as a framework for educators to build their own courses. The Curricula modules cover accessibility foundations that apply broadly, and specific skills for developers, designers, content authors, and others [15]. Additionally, the International Association of Accessibility Professionals (IAAP), which operates as a division of the Global Initiative for Inclusive ICTs G3ICT, provides professional resources and certification in digital accessibility in a bid to support accessibility professionals developing and advancing their careers and integrating accessibility into digital products and contents [10]. The W3C's Web Accessibility Initiative (WAI) and the UNESCO Institute for Information Technologies in Education (UNESCO IITE) cooperated to provide a free online course built on the open curricula of the W3C WAI. It is in this context that they launched an Introduction to Web Accessibility Massive Open Online Course MOOC on edX platform [16]. Learners can audit the course for free or choose to receive a paid verified certificate [17]. In the same way, ITU organization offers a self-paced online training

on ICT accessibility with the aim to develop a good understanding of ICT accessibility among all relevant stakeholders [18]. Apart from above examples of organizations striving to achieve ICT accessibility through capacity building and training, several universities have also joined these endeavors and have integrated ICT accessibility courses into their curricula [19] [20]. In Qatar, Hamad bin Khalifa University HBKU [5] and Community College of Qatar CCQ have recently introduced courses dealing with digital accessibility in their curriculum. In the US, the University of Illinois at Urbana-Champaign in Illinois, e.g. has launched an ICT-AID MOOC on Coursera that allows learners to explore the fundamentals of accessibility and inclusive design. Learners can audit the course for free or choose to receive a paid verified certificate (University of Illinois at Urbana-Champaign, 2020) [21].

This is indeed a very important and beneficial effort towards fostering ICT accessibility in the region. It appears, however, that none cannot be effectively used as a holistic and comprehensive framework to cover all the knowledge, skills, and attitudes that learners need to acquire, nor can it be utilized as an instrument for describing and curating existing materials. Therefore, a dedicated competency framework, that specifies globally what stakeholders need in terms of ICT-AID capability development, training, and education towards achieving, is required more than ever before.

In fact, when well-defined ICT-AID competencies are spotted within a dedicated competency framework and adopted as a global standard, individuals and professionals from all over the world will be able to gain the same level of understanding and the same skill sets scaffolded by training professionals

Nafath Issue 21

35

and education providers. These latter, by availing Among the audiences for Mada ICT-AID competency such a common competency framework, can better framework are decision makers, administrators, define their curricula and training programmes and teachers responsible for education and training and materials, and would accordingly drive policy formulation, policies, and programs, as globally their training offers addressing more well as business and industry experts. Education, accurately ICT accessibility jobs' needs. It is training and certification programs developed within this context, that Mada has developed the according to the Mada ICT-AID competency Mada ICT-AID competency framework, as part framework are intended to cover a wide range of its fully-fledged innovative Academy initiative of occupations and professions, such as digital toward fostering ICT accessibility proficiency in content writers, Web content managers, web the region and beyond [22]. developers, designers, instructional designers, digital education specialists, teachers, project Mada ICT-AID Competency Framework managers, ICT managers, marketing professionals, communications specialists, etc.

Mada has developed the ICT-AID Competency Framework [23] in order to guide training of Mada ICT-AID competency framework features students and workers on the foundation in ICT six key domains of competencies that follow a accessibility and inclusive design, which allows logical progression in mastering ICT accessibility the intended audience to make a sense of the experience of disability related to the use of ICT, (Table I): and to increase their accessibility awareness when using and creating electronic materials[24], and **D1.** Becoming familiar with Disability and to apply accessibility standards and techniques Accessibility [25][26], including W3C Web Content Accessibility **D2.** Describing the legal landscape of Disability Guidelines WCAG[27], so that they will be well and Accessibility prepared to excel in their accessibility professions **D3**. Making a sense of Universal Design and contribute in the creation of accessible products, contents and services. D4. Creating Accessible Digital Content

With a view to fostering the integration of ICT Accessibility in education and training **D6.** Making Digital Environments and Platforms Accessible programmes addressing diverse audiences, Mada ICT Accessibility and Inclusive Design ICT-AID competency framework can be used as Each competency domain contains a set of a tool to guide professional education services, competencies each of which is sub-divided into universities and individuals on delimiting the capabilities (Table II) that the intended audience required relevant competencies in ICT accessibility should master to be able to develop, evaluate, [28]. Mada ICT-AID competency framework, as an and remediate accessible digital contents. The open framework available in open access under first four competency domains (from D1 to D4) Attribution-ShareAlike 4.0 International (CC BY-SA represent the ICT-AID core competencies covering 4.0), can be adapted for use in different learning kev capabilities required to developing a deeper contexts and modes, and availed to develop, mastering of the fundamental principles of digital describe and publish ICT-AID aligned resources accessibility. The fifth competency domain D5 in courseware repositories. encompasses required capabilities for the evaluation and the development of accessible

Mada ICT Accessibility and Inclusive **Design ICT-AID Competency Framework**

- **D5.** Creating Accessible Web Content

Mada ICT Accessibility and Inclusive **Design ICT-AID Competency Framework**

.

36

_ . . .

web content in compliance with international standards and best practices. At last, the sixth competency domain features the broad scope of accessible digital environments and platforms, including mobile apps, gaming, and future digital technologies.

Table 1	ICT-Aid Competencies			
Competency Domains	Competencies			
D1. Becoming familiar with Disability and Accessibility	 D1.1 Distinguishing theoretical Models of Disability D1.2 Recognizing the major types of Disabilities and their impact on lives of PWDs D1.3 Demonstrating Understanding of Accessibility D1.4 Describing and following disability etiquette guidelines for interacting with PWDs 			
D2. Describing the legal landscape of Disability and Accessibility	 D2.1 Identifying and characterizing main Laws, Declarations and Conventions on Human Disability Rights D2.2 Recognizing key ICT Accessibility regulations, policies and best practices D2.3 Identifying ICT Accessibility standards D2.4 Integrating ICT Accessibility across the organization 			
D3. Making a sense of Universal Design	D3.1 Describing the Universal Design paradigm D3.2 Demonstrating understanding of Universal Design for Learning			
D4. Creating Accessible Digital Content	 D4.1 Identifying major Accessibility considerations to common digital formats D4.2 Creating Accessible Word-processing documents D4.3 Creating Accessible Presentation documents D4.4 Creating Accessible PDF documents D4.5 Generalizing Accessibility considerations for different multimedia formats 			

Nafath Issue 21

37

Table 1	ICT-Aid Compete
Competency Domains	Competencies
D5. Creating Accessible Web Content	D5.1 Demonstrat D5.2 Designing a the W3C Acc D5.3 Testing and D5.4 Remediatin
D6. Making Digital Environments and Platforms Accessible	D6.1 Identifying a Applications D6.2 Evaluating I D6.3 Identifying a game Access D6.4 Ensuring th technologie

Based on these competencies, ICT-AID specializations in Arabic and English languages are currently being developed. The specialization includes three courses aligned to the ICT-AID competency framework according to three skill levels: beginner, intermediate and advanced. These courses can be offered at universities and training institutions (Table 3), and certificates to be obtained accordingly to attest the acquisition of the necessary competencies for each level. As such, Mada is collaborating with partners in order to offer a joint accredited training programmes in Arabic and English languages including basically the following three key courses:

- An introduction to ICT Accessibility and Universal Design, aligned to the following competencies: D1, D2, D3, D4.1, D4,2, D4.3, D4.4, D4.5.1, D4.5.2, D4.5.3, D4.5.4, D4.5.5, and D5.1.
- Digital Accessibility, aligned to the following competencies: D4.5.6, D4.5.7, D4.5.8, D4.5.9, D4.5.10, D5.2, D5.3, and D5.4.
- Mobile and Environments Accessibility, aligned to the competency domain D6.

Mada ICT Accessibility and Inclusive **Design ICT-AID Competency Framework**

encies

ating understanding of Web Accessibility and creating web content in accordance with ccessibility specifications d evaluating Web Accessibility ng inaccessible Web documents

and applying the basic principles of Mobile ns Accessibility Mobile Applications Accessibility Accessibility considerations for improved ssibility

he Accessibility of emerging digital es

Table 2

Mada ICT Accessibility and Inclusive **Design ICT-AID Competency Framework**

Capabilities Corresponding To The Competency Domain D1

Competency Domains Competencies **D1.1** Distinguishing 1. Identifying prominent theoretical models of disability 2. Describing Models' characteristics and understanding their theoretical Models of Disability strengthens and weaknesses 3. Defining Disability on your own words **D1.2** Recognizing the major 1. Identifying basic categories of Disabilities and related types of Disabilities and their demographics impact on lives of PWDs 2. Naming main characteristics of disabilities and associated barriers 3. Distinguishing how PWDs are impacted by different technologies **D1.3** Demonstrate 1. Describing the broad scope of Accessibility and technology Understanding of 2. Identifying Benefits of Accessibility 3. Defining ICT Accessibility and related terminology on your Accessibility own words 4. Exploring Accessibility barriers and Accessibility solutions 5. Identifying the use and application of AT and adapted Strategies 6. Identifying key professional organizations and networks in the area of Accessibility 7. Discussing your role in promoting digital inclusion through ICT **D1.4** Describing and following 1. Identifying major misconceptions or stereotypes about

disability etiquette quidelines **PWDs** 2. Applying disability etiquette to different life settings for interacting with PWDs 3. Determining what your contributions could be to the **Disability and ICT Accessibility movement**

39

The first course corresponding to the first level can On the other hand, in order to promote the be integrated in education curricula at universities development of accessible training and educational e.g. under the Common Core Program CCP. This contents, particularly in ICT accessibility topics, course is intended to prepare for the first certificate taking advantage from the rise of education level attesting the acquisition of core competencies technology [29], Mada offers a dedicated accessible in ICT Accessibility and Inclusive Design. The second open educational resources OER Hub on OER and third courses are targeting intermediate and Commons, where ICT-AID aligned accessible advanced levels and can be accordingly included resources are aggregated, curated and managed through collections, and groups, and development within specialized computer science programs at tools. Mada ICT-AID OER Hub is intended to universities. These latter levels allow students and trainees taking the certificate for digital be a Global knowledge hub featuring freely accessibility specialists and then the certificate accessible ICT-AID resources toward expanding for digital accessibility experts: capabilities for all in the realm of ICT accessibility [30]. Furthermore, Mada ICT Accessibility and Level I Certificate: Core Competencies in ICT Inclusive Design competency framework is now Accessibility and Inclusive Design featured as a standard available to users of the **OER** Commons digital library and collaboration platform (Fig. 1). As a standard, Mada ICT-AID will be used to index and describe ICT-AID aligned

- Level II Certificate: Digital Access Specialist
- Level III Certificate: ICT Accessibility Expert

Table 3		ICT-Aid Specialization Within Mada Accredited Training Programme		
Course	Title	Level	Certification	
Course 1	An introduction to ICT Accessibility and Universal Design	Starter	ICT Accessibility and Universal Design Core Competencies	
Course 2	Digital Accessibility	Intermediate	Digital Accessibility Specialist	
Course 3	Mobile and Environments Accessibility	Advanced	Digital Accessibility Expert	

Mada ICT Accessibility and Inclusive **Design ICT-AID Competency Framework**

educational resources providing accordingly ease of access and retrieve of these resources. As such, the ICT-AID competency framework will be used for searching, aligning, and evaluating Open Educational Resources serving globally learners and educators.

Expert survey on Mada ICT-AID Competency Framework

Generally, surveys are conducted to acquire expert opinions and recommendations in a particular field [31]. For a better understanding of the required relevant ICT-AID competencies and their inclusion and structure within a framework of competencies, Mada centre prepared and shared questionnaires with a group of experts, requesting their review and then validation on the proposed framework. In fact, two-round Delphi questionnaires were emailed to a selected group of experts in the region. Most of the reviewers came from academia with expertise in accessibility, education technology, and competency frameworks. In the first instance, experts were invited and contacted to gauge their interest in participating in the study. Then 22 experts (from 32 invited experts, about 70 % active responses) took part in the study. As part of the first round of the survey, experts reviewed and validated the structure of the proposed competency framework and checked if it has covered all the relevant competencies, and capability levels and related levels of proficiency. The first questionnaire covers three dimensions, namely: (1) Personal and professional Information; (2) ICT-AID competency domains; and (3) ICT-AID competencies per competency domain. For about half a month, experts were invited to add their detailed responses to the questionnaire sent via email. Following this, the response data were collected and analyzed, and the competency framework was updated and enhanced based on the most common suggestions. Among the 22 experts involved in the study, it is noteworthy that 10 out of 22 affirmed that ICT-AID courses (or similar courses) are not yet integrated into the curricula of universities in their countries, six do not know, and only 6 experts replied that it is or it would be integrated. As for the guestion on existing similar ICT accessibility and inclusive design competency frameworks, 15 out of 22 answered no and 7 referred mostly to the W3C WAI curricula on Web accessibility and IAAP

professional certifications, which both don't cover comprehensively all required knowledge and capabilities on ICT-AID topics, and they are not structured and featured as a competency framework (Fig. 2). The remainder of the first questionnaire is dedicated to investigating the structure of the framework, and to check the spotted competencies and underlying capabilities. At last, 7 experts strongly agreed with the proposed structure of the framework, 12 agreed and 3 somehow agreed. After collecting and analysing inputs and feedbacks from experts, the ICT-AID competency framework was updated and enhanced. Then, the experts were requested in the second-round questionnaire to confirm the suggested updates and validate subsequently the final release of the proposed framework. The average rate of 9.05 on the interval [1, 10] was obtained to expressing the extent to which experts do agree with the current enhanced ICT-AID competency framework version. The promising average rate of 8.09 on the interval [1, 10] was obtained to expressing the potential readiness of experts' universities to be ICT-AID adopters [32].

Do you know any existing similar ICT Accessibility and inclusive design competency framework?

Figure 2

Investigating Similar ICT accessibility and inclusive design competency frameworks Nafath Issue 21

41

ICT-AID use cases by Mada partners in Qatar in ongoing accessibility research and projects at HBKU and Mada. In addition, HBKU also offered a accessibility courses aligned with Mada ICT-AID class on accessibility and inclusive design as part competency framework. In Qatar, Hamad Bin Khalifa of its Interactive Design for Healthcare course in University HBKU for example, offers a course on collaboration with Mada Center to build research ICT accessibility in the Bachelor of Computer capacity. A workshop on digital accessibility was Programming and Engineering. Additionally, conducted at Mada Center to all students who took master's and doctoral students at HBKU College of this class. In the workshop, entitled: "Introduction Sciences and Engineering have the opportunity to to Digital Accessibility", participants learned about take a Human-computer Interaction elective course the importance of including people with disabilities covering ICT accessibility and inclusive design and making sure they have access to technology topics. Accordingly, research students are engaged related innovations. Participants were provided actively through active research grants related with opportunities to engage with real-world to accessibility, digital inclusion, and assistive applications and technologies, enhancing thus technology. The Mada Accessibility and Inclusive their learning experience (to learn more about Design ICT-AID Competency Framework was HBKU experience, please see the next paper in availed to design and prepare these courses with a this edition entitled: ICT accessibility Research view to expand the student's capabilities in the ICT Capacity building in the State of Qatar). accessibility area. By covering a variety of topics of interest, such courses provide a comprehensive The Community College of Qatar CCQ has also review of the skills needed to develop, review and recently introduced an introductory ICT-AID evaluate accessible digital content and platforms in course in Arabic language as part of its core compliance with international standards and best curriculum program supported by Mada. This practices. Indeed, a student who has completed is indeed a very important and beneficial effort ICT-AID courses will have the capacity mainly towards fostering ICT accessibility in Arabic in to: understand the definition and the importance the region. This course, entitled : "An introduction of ICT accessibility, develop accessible content, to ICT accessibility and inclusive design" has websites and mobile applications; evaluate the been started in Fall 2022 with about 22 female level of accessibility of digital content services, students, mostly from the governmental sector and platforms (e.g. documents, websites, mobile in Qatar. The class is covered weekly in part applications, electronic kiosks, etc.); identify the use as a theoretical lecture class and also as a and application of assistive technology; and apply lab. The course was designed and prepared by universal and inclusive design principles to user-Mada in Arabic language based on Mada ICT-AID centered technology development. As part of the competency framework. Accordingly, the following aforementioned ICT-AID courses, HBKU students ICT-AID competencies are targeted as per the visited Mada Center and its innovation lab and met framework: D1, D2, D3, D4.1, D4,2, D4.3, D4.4, Mada team, which has given them the opportunity D4.5.1, D4.5.2, D4.5.3, D4.5.4, D4.5.5, D4.5.6, and to learn more about Mada's programs, services, D5.1. The course is available online in open access and activities towards enhancing ICT accessibility under Attribution-ShareAlike 4.0 International in Qatar and beyond. It is also noteworthy that (CC BY-SA 4.0) through Mada ICT-AID aligned OER students were involved in ongoing innovative Hub. Therefore, CCQ and any other educational projects to address pressing accessibility issues. institutions in Qatar and beyond, can adapt the Throughout the entire process, students showed course for use in different learning contexts and an intense interest and full engagement. There are modes. It is noteworthy that this introductory many of them who were interested in participating course is part of the Mada ICT accessibility and

Mada ICT Accessibility and Inclusive Design ICT-AID Competency Framework

42

Inclusive Design specialization which is composed of three courses through which students will make a sense of Accessibility and Inclusive Design. and they will acquire the ICT accessibility skills needed to apply, and review, and evaluate the Accessibility of digital platforms in compliance with International ICT Accessibility standards and best practices. By taking the first level of the specialization, CCQ students will understand and learn foundations in ICT Accessibility and Inclusive Design. They will learn the broad scope of Disability, Accessibility and related legal landscape, and they will explore the key principles guiding Universal Design and Accessible content creation. Moreover, they will learn how PWDs use different Assistive Technologies and adaptive strategies. By completing the course, students will be able to develop, evaluate, and remediate Accessible Digital Materials, and they will be prepared for the next Mada specialization courses and further study in ICT Accessibility. The introductory course encompasses the following 7 chapters: the foundation in Disability and Accessibility; Assistive Technologies; the legal landscape of Disability and Accessibility; Universal Design and Universal Design for Learning; ICT Accessibility standards; Accessible Digital Content; and Web Accessibility fundamentals. Furthermore, an onsite visit to Mada center was conducted so that CCQ students get the opportunity to meet Mada team and get hands-on labs in the Mada innovation lab and Mada FabLab. Students were also asked to prepare capstone projects covering all learning outcomes in order to demonstrate their understanding of ICT accessibility and apply related standards and best practices while designing and creating accessible products, contents and services.

Apart from the aforementioned use cases of Mada ICT-AID competency framework by universities in Qatar, the framework was also availed in other specific training programs such as "Tamheen". In fact, this training program aims at qualifying non-pedagogical Qatari graduates to work in the teaching profession in governmental schools in Qatar. The program is a pioneering initiative launched in November 2019 by the Ministry of Education and Higher Education in Qatar, represented by the Training and Educational Development Center (TEDC), in collaboration with national and international partners including Mada Center. A specific ICT accessibility training as part of the whole program has been designed then conducted by Mada. This year, the training of the third batch was designed using the ICT-AID competency framework, targeting accordingly a set of necessary competencies and capabilities related to disability and ICT accessibility, that teachers should acquire and integrate into their teaching practices. The tailored training program was broken down basically into the six following courses with a total number of 33 training hours: Introduction to disability and Assistive Technology; Universal Design for Learning; Accessible documents, Introduction to mobility impairments and digital accessible solutions; Introduction to sensory, visual and hearing impairments and digital accessible solutions; Usage of accessible technology solutions to serve communication difficulties; And Introduction to assistive technology, accessible solutions, and learning difficulties. A number of 6 female trainees attended the training in 2022 and graduated last June.

Nafath Issue 21

43

Conclusion and future work

It is deemed important and relevant to cover We gratefully thank the working group of experts ICT accessibility and inclusive design in training on Mada ICT-AID Accessibility and Inclusive Design, programs, curricula, and courses. This is indeed for their valuable inputs. To see the list of experts, prompted by the unprecedented technological please refer to the Arab ICT Accessibility Expert developments on one hand, and the increasing Group Web site by Mada "AIAEG", an initiative number of people with disabilities and the elderly from Mada Centre, established to unify the Arabic having the right to avail such technologies on the efforts and to establish the first expert hub in the other hand, as well as the international and national region dedicated to Digital Accessibility. legislation requiring that technology must be universally accessible to everyone, regardless of ability or age. Despite this urgent need, there is a lack of knowledge, and awareness, and expertise on accessibility, especially in the Arab region, due to, among other factors, the lack of integration of ICT-AID aligned courses in educational institutions and nonexistence, to the best of our knowledge, of a comprehensive global competency framework delimiting all required relevant competencies in the field of ICT accessibility. Within this context, Mada center has developed an open competency framework in order to guide globally training of students and workers on the foundation in ICT accessibility and inclusive design, so that they will be well prepared to excel in their accessibility professions and contribute in the creation of accessible products, contents and services. Future works include the dissemination of Mada ICT-AID competency framework upon possible different adaptations, translations, and contextualization, as well as producing guidelines and toolkits to support adopting the framework worldwide as an ICT-AID education standard.

Acknowledgment

Mada ICT Accessibility and Inclusive Design ICT-AID Competency Framework

44

References

- World health Organization WHO, "World Report on Disability - Summary," World Rep. Disabil. 2011, no. WHO/NMH/ VIP/11.01, pp. 1–23, 2011.
- 2. S. C. Smeltzer, "Improving the health and wellness of persons with disabilities: a call to action too important for nursing to ignore," Nurs. Outlook, vol. 55, no. 4, 2007, doi: 10.1016/J.OUTLOOK.2007.04.001
- "Convention on the Rights of Persons with Disabilities (CRPD), United Nations Enable." https://www.un.org/development/desa/ disabilities/convention-on-the-rights-ofpersons-with-disabilities.html (accessed Sep. 26, 2021).
- "Transforming our world: the 2030 Agenda for Sustainable Development, Department of Economic and Social Affairs." https:// sdgs.un.org/2030agenda (accessed Sep. 26, 2021).
- 5. DARE Index, "DARE INDEX 2020 Global Progress In Digital Accessibility Implementation By Crpd States Parties", G3ICT, 2020.
- Zhang, X., Tlili, A., Nascimbeni, F. et al. Accessibility within open educational resources and practices for disabled learners: a systematic literature review. Smart Learn. Environ. 7, 1 (2020). https:// doi.org/10.1186/s40561-019-0113-2, 2020
- A. Tlili, M. Jemni, M. K. Khribi, R. Huang, T.-W. Chang, and D. Liu, "Current state of open educational resources in the Arab region: an investigation in 22 countries," doi: 10.1186/s40561-020-00120-z, 2020.
- 8. M. K. Khribi and A. Al-Sinani, "Harnessing OER to build capacity in ICT Accessibility and Inclusive Design", OEGlobal conference 2021.

- M. Gould, A. Leblois, F. Cesa Bianchi, V. Montenegro, and E. Studer, "Convention on the Rights of Persons with Disabilities 2012 ICT Accessibility Progress Report," 2014.
- 10. "Training & Certification G3ict: The Global Initiative for Inclusive ICTs." https://g3ict. org/what-we-do/training-certification (accessed Sep. 26, 2021)
- 11. A. Nishchyk and W. Chen, "Integrating Universal Design and Accessibility into Computer Science Curricula - A Review of Literature and Practices in Europe," in Studies in Health Technology and Informatics, 2018, pp. 56–66.
- J. Gilligan, W. Chen, and J. Darzentas, "Using MOOCs to Promote Digital Accessibility and Universal Design, the MOOCAP Experience," in Studies in Health Technology and Informatics, 2018, pp. 78–86.
- "Educational Training Database, International Association of Accessibility Professionals." https://www. accessibilityassociation.org/s/educationaltraining-database (accessed Sep. 26, 2021).
- 14. "Resources for Trainers and Educators, Web Accessibility Initiative (WAI) W3C." https://www.w3.org/WAI/roles/trainers/ (accessed Sep. 26, 2021).
- 15. "Curricula on Web Accessibility: A Framework to Build Your Own Courses, Web Accessibility Initiative (WAI) W3C." https://www.w3.org/WAI/curricula/ (accessed Sep. 26, 2021).
- 16. S. L. Henry, S. Abou-Zahra, and J. Brewer, "The role of accessibility in a universal web," in Proceedings of the 11th Web for All Conference on - W4A '14, Apr. 2014, pp. 1–4, doi: 10.1145/2596695.2596719.

45

- 17. M. C. Forgue and S. Abou-Zahra, "Introduction to Web Accessibility MOOC course on Edx by W3C," 2020. https:// learning.edx.org/course/coursev1:W3Cx+WAI0.1x+3T2019/home.
- "ICT Accessibility The key to inclusive communication, ITU Academy." https:// academy.itu.int/training-courses/fullcatalogue/ict-accessibility-key-inclusivecommunication-line-self-paced-training (accessed Sep. 26, 2021).
- 19. M. Whitney, "Teaching Accessible Design: Integrating Accessibility Principles and Practices into an Introductory Web Design Course," Inf. Syst. Educ. J., vol. 18, no. 1, pp. 4–13, 2020, [Online]. Available: https://eric. ed.gov/?id=EJ1246240.
- 20. M. Ferati and V. Bahtijar, "Accessibility in Web Development Courses: A Case Study," Informatics, vol. 1, p. 8, 2020, doi: https:// doi.org/10.3390/informatics7010008.
- 21. "An Introduction to Accessibility and Inclusive Design, Coursera." https://www. coursera.org/learn/accessibility (accessed Sep. 26, 2021).
- 22. M. K. Khribi, A. Othman and A. N. Al Jabor, "Fostering ICT accessibility proficiency through Mada ICTAID Competency Framework", The 8th International conference on ICT & Accessibility (ICTA), 2021
- 23. Mada, "MADA Information and Communication Technologies Accessibility and Inclusive Design ICT-AID Competency Framework," 2021.
- 24. A. Lahiri, A. Othman, D. A. Al-Thani, and A. Al-Tamimi, "Mada Accessibility and Assistive Technology Glossary: A Digital Resource of Specialized Terms," in ICCHP, 2020, p. 207.

- 25. Y. Yesilada and S. In Harper, Web accessibility: A foundation for research. 2019.
- 26. A. Cook, J. Polgar, and P. Encarnação, Assistive Technologies: Principles and Practice. 2019.
- 27. W3C, "Web Content Accessibility Guidelines (WCAG) 2.1," 2018.
- A. Meyer, D. H. Rose, and D. Gordon, Universal design for learning: Theory and Practice. CAST Professional Publishing, 2014.
- 29. M. Jemni and M. K. Khribi, Open education: from OERs to MOOCs. Springer, 2016.
- 30. Y. W. Cheng, P. C. Sun, and N. S. Chen, "The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors," Comput. Educ., vol. 126, pp. 399–416, Nov. 2018, doi: 10.1016/J. COMPEDU.2018.07.02
- 31. M. K. Khribi, A. Othman, A. Al-Sinani. (2022). "Toward Closing the Training and Knowledge Gap in ICT Accessibility and Inclusive Design Harnessing Open Educational Resources". The 22nd IEEE International Conference on Advanced Learning Technologies ICALT 2022.
- 32. M. K. Khribi, A. Othman,A.N. Al Jabor. (2022). "Fostering ICT accessibility proficiency through Mada ICTAID Competency Framework", The 8th International Conference on ICT & Accessibility (ICTA), 2021.

46

Using **Brain-Computer** Interface to improve learning skills for students with disabilities

a rapid review

Achraf Othman Mada Center

> **Brain-Computer Interface** (BCI) enables direct communication between the brain and an external device. BCI systems have become a popular area of study in recent years. These technologies can be utilized in various ways to assist people with disabilities and healthy individuals. **Regarding substantial BCI** advancements, we can say that these systems are on the verge of commercialization. This review has considered current trends in BCI research on inclusive education to assist students with disabilities in achieving improved learning outcomes for all students in an inclusive environment.

Nafath Issue 21

47

a rapid review

Introduction

Over the past few decades, research on brain-computer

interface (BCI) devices has become widespread. BCI enables a direct connection between the brain and an external device such as a computer, robot, neuro-prosthesis, exoskeleton, speech prosthesis, assistive technology, or wheelchair [1] [2]. Through several focus groups with persons with disabilities, we found an interest in using BCI technology to innovate new solutions and products [3]. These systems can be utilized for a variety of purposes. They are typically employed for clinical purposes but can also be used for entertainment, training, security, treatment, education, safety, communication, and control, among other applications [4][5]. Most BCI systems are separated into invasive and non-invasive approaches. The non-invasive technique is the most popular and most secure of these options. Even though numerous publications have been published and several actual applications have been developed, BCI systems still face numerous obstacles and restrictions.

Figure 1. Possible Electrode placement over the scalp.

Understanding how the brain functions to measure and interpret brain waves is crucial. The electrical and magnetic phenomena of neural function can be monitored during brain functioning. The most popular form of electrophysiological observation is electroencephalography [6], in which biosensors measure and record electrical signals generated by brain

Using Brain-Computer Interface to improve learning skills for students with disabilities a rapid review

48

activity. Brain cells communicate by sending electrical impulses; the more impulses sent, the more electricity the brain generates. The pattern of this electrical activity can be measured by an electroencephalogram (EEG); these EEG data are often analyzed by a quantitative EEG (QEEG) approach, in which the frequency spectrum of the EEG signals is evaluated [7]. Figure 1 presents an overview of possible placement over the scalp to detect and monitor electrical impulses of brain activities [8].

Taking an EEG requires sophisticated, expensive, extensive, and immobile equipment; however, technological advancements have enabled mobile EEG biosensor-based embedded devices for new applications, including entertainment, control devices, and education. In these applications, a BCI establishes the relationship between the EEG-observed brain activity and the generated function [9]. Advanced BCIs include biosensors and modern signal processing units, are less expensive and more portable due to their simple design, and are as accurate as clinical EEG equipment [10]. Table 1 presents a summary of different methods.

Table 1. Summary of neuroimaging methods.

Neuroimaging method	Activity measured	Direct/Indirect Measurement	Temporal resolution	Spatial resolution	Risk	Portability
EEG	Electrical	Direct	~0.05 s	~10 mm	Non- invasive	Portable
MEG	Magnetic	Direct	~0.05 s	~5 mm	Non- invasive	Non- portable
ECoG	Electrical	Direct	~0.003 s	~1 mm	Invasive	Portable
Intracortical neuron recording	Electrical	Direct	~0.003 s	~0.5 mm (LFP) ~0.1 mm (MUA) ~0.05 mm (SUA)	Invasive	Portable
fMRI	Metabolic	Indirect	~1 s	~1 mm	Non- invasive	Non- portable
NIRS	Metabolic	Indirect	~1 s	~5 mm	Non- invasive	Portable

Nafath Issue 21 a rapid review

49

Figure 2. Sample illustration: a model of bioelectric signals.

Education research demonstrates that active student participation facilitates acquiring and retaining new information more effectively than traditional lecture-based instruction [11]. Moreover, when this active engagement is group-based as opposed to individual-based, students' problem-solving, written, and speaking skills, as well as their learning and cooperative skills [12].

Effective acquisition of practical engineering skills is possible through problem-based learning (PBL) [13], teambased learning [14], and project-based learning (PjBL) [15]. Engineering strongly emphasizes the ability to apply information in the real world.

BCI as an Assistive Technology

Significant advances have been made in the research of BCI control [16] [17]. It can be used in different use cases such as and not limited to:

- Control of external devices, such as limbs prostheses [18]
- Smart home environments [19]
- Robots and Exoskeletons [20]
- Robotic hand [21]
- Hearing prostheses [22]
- Wheelchairs [23]

Using Brain-Computer Interface to improve learning skills for students with disabilities a rapid review

- 50
- Computer programs [24]
- Virtual reality, avatars, and metaverse [25]
- Virtual environment and smart cities [26]

BCI's most important use is to give individuals intuitive control over overreaching and grasping movements using their paralyzed limbs [27]. Additional possible applications include communication [28]. One of the biggest challenges is restoring and replacing motor function or communication for people with physical disabilities.

BCI control in Educational and Serious Games

All kids rely heavily on play for their learning and growth. Both neurotypical and neurodiverse children gain more from engaging in activities that keep them interested, engaged, and offer embedded learning opportunities [29]. However, current BCI software focuses on basic, utility-driven applications, such as spelling grids and cursor movement. While valid, such applications are limited in their appeal for sustained use, particularly for young BCI users. Evidence suggests that enhancing engagement in BCI through gamified learning may result in a broader acceptance of the technology while aiding in the dissemination of BCI control schemes.[30]. A growing trend across BCI research endeavors reveals that more engaging. User-friendly activities may promote a variety of tangible boons in BCI use—both in short-term task learning and long-term BCI accuracy [31]. Therefore, there is an obvious need to support the development of more engaging, accessible BCI software that includes key play components in pediatric BCI. BCI systems provide the new potential for both virtual plays (e.g., videogames and digital media) and physical play (e.g., manipulation of toy robots, cars, et cetera). Using the nonmuscular properties of BCI, such technologies may enable previously excluded populations to explore and learn through play. BCI systems provide potential for both virtual play (e.g., videogames and digital media) and physical play (e.g., manipulation of toy robots, cars, et cetera). Using the nonmuscular properties of BCI, such technologies may enable previously excluded populations to explore and learn through play. Previous research has demonstrated mediums as essential for continued learning and rehabilitation in children with disabilities. Advancements in BCI research furthering the interaction between BCI systems and play thus represent a promising untapped potential for pediatric BCI end-users.

Nafath Issue 21

51

The outcome of learning activities using BCI

BCI can play a vital role in closing the knowledge gap and improving educational skills in students with disabilities [32]. The primary learning outcomes of these courses are that students with disabilities can:

- · Classify systems based on their properties and understand and exploit the implications of linearity, time invariance, and stability;
- Determine and use Fourier transforms and other signal analysis methods;
- Understand the application of control methods, proportional-integral-differential algorithms, and properties of a control;
- Understand and analyze the design implications and interconnections of physical and control systems;
- Develop mathematical models for real physical and control systems and produce block diagram implementations of the mathematical models and control methods.
- BCI can present an alternative technology to control and take online courses during crises [33].

Conclusion and future work

In general, BCI connects the brain and external devices. BCI is suitable for the improvement and facilitation of the life of everyone. BCIs can be used in many areas and inclusive education. Overall, findings show that BCI is a topic being closely studied by scientists worldwide. This study also demonstrates that BCI technology was commonly used for medical objectives. In education, BCI can be used in remote learning to control the computer for students with physical disabilities. The technology is still under development and can achieve excellent results with impact in the future.

Using Brain-Computer Interface to improve learning skills for students with disabilities a rapid review

52

References

- 1. M. Zabcikova, Z. Koudelkova, R. Jasek, and J. J. Lorenzo Navarro, "Recent advances and current trends in brain-computer interface research and their applications," Int. J. Dev. Neurosci., vol. 82, no. 2, pp. 107-123, 2022, doi: 10.1002/jdn.10166.
- 2. Lahiri, Anirban, Achraf Othman, Dena A. Al-Thani, and Amani Al-Tamimi. "Mada Accessibility and Assistive Technology Glossary: A Digital Resource of Specialized Terms." In ICCHP, p. 207. 2020.
- 3. Al Thani, Dena, Amani Al Tamimi, Achraf Othman, Ahmed Habib, Anirban Lahiri, and Shahbaz Ahmed. "Mada Innovation Program: A Go-to-Market ecosystem for Arabic Accessibility Solutions." In 2019 7th International conference on ICT & Accessibility (ICTA), pp. 1-3. IEEE, 2019.
- 4. P. Aricò, G. Borghini, G. D. Flumeri, N. Sciaraffa, and F. Babiloni, "Passive BCI beyond the lab: current trends and future directions," Physiol. Meas., vol. 39, no. 8, p. 08TR02, Aug. 2018, doi: 10.1088/1361-6579/aad57e.
- 5. C. S. Nam, A. Nijholt, and F. Lotte, Brain-computer interfaces handbook: technological and theoretical advances. CRC Press, 2018.
- 6. C. D. Binnie and P. F. Prior, "Electroencephalography.," J. Neurol. Neurosurg. Psychiatry, vol. 57, no. 11, pp. 1308-1319, 1994.
- 7. L. S. Prichep and E. R. John, "QEEG profiles of psychiatric disorders," Brain Topogr., vol. 4, no. 4, pp. 249-257, 1992.
- 8. L. F. Nicolas-Alonso and J. Gomez-Gil, "Brain Computer Interfaces, a Review," Sensors, vol. 12, no. 2, Art. no. 2, Feb. 2012, doi: 10.3390/s120201211.

- 9. L.-D. Liao et al., "Biosensor Technologies for Augmented Brain–Computer Interfaces in the Next Decades," Proc. IEEE, vol. 100, no. Special Centennial Issue, pp. 1553-1566, May 2012, doi: 10.1109/ JPROC.2012.2184829.
- 10. A. Andrews, "Integration of Augmented **Reality and Brain-Computer Interface** Technologies for Health Care Applications: Exploratory and Prototyping Study," JMIR Form. Res., vol. 6, no. 4, p. e18222, 2022.
- 11. M. Prince, "Does Active Learning Work? A Review of the Research," J. Eng. Educ., vol. 93, no. 3, pp. 223-231, 2004, doi: 10.1002/ j.2168-9830.2004.tb00809.x.
- 12. J. Katona and A. Kovari, "A Brain-Computer Interface Project Applied in Computer Engineering," IEEE Trans. Educ., vol. 59, no. 4, pp. 319-326, Nov. 2016, doi: 10.1109/ TE.2016.2558163.
- 13. M. C. LaPlaca, W. C. Newstetter, and A. P. Yoganathan, "Problem-based learning in biomedical engineering curricula," in 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference Proceedings (Cat. No. 01CH37193), 2001, vol. 2, pp. F3E-16.
- 14. S. Honeychurch, I. Ikegwuonu, and M. Fletcher, "Team-Based Learning: Optimising active and Collaborative Learning in a blended model of learning and teaching".
- 15. M. Kószó, "Projects on environmental education as means and methods to develop abilities used in the training of lower primary teachers," in Proc. Projects Environ. Educ., 2013, pp. 136-142.

Nafath Issue 21

53

a rapid review

- 16. Luu, Trieu Phat, Yongtian He, Sho Nakagome, and Jose L. Contreras-Vidal. "EEG-based brain-computer interface to a virtual walking avatar engages cortical adaptation." In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3054-3057. IEEE, 2017.
- 17. Hong, Xin, Zhong Kang Lu, Irvin Teh, Fatima Ali Nasrallah, Wei Peng Teo, Kai Keng Ang, Kok Soon Phua, Cuntai Guan, Effie Chew, and Kai-Hsiang Chuang. "Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study." Scientific reports 7, no. 1 (2017): 1-12.
- 24. Gannouni, Sofien, Kais Belwafi, Mohammad Reshood Al-Sulmi, Meshal Dawood Al-Farhood, Omar Ali Al-Obaid, Abdullah 18. Buccino, Alessio Paolo, Hasan Onur Keles, Mohammed Al-Awadh, Hatim Aboalsamh, and Ahmet Omurtag. "Hybrid EEG-fNIRS and Abdelfettah Belghith. "A Brain asynchronous brain-computer interface for Controlled Command-Line Interface to multiple motor tasks." PloS one 11, no. 1 Enhance the Accessibility of Severe Motor (2016): e0146610. Disabled People to Personnel Computer." Brain Sciences 12, no. 7 (2022): 926.
- 19. Minguillon, Jesus, M. Angel Lopez-Gordo, and Francisco Pelayo. "Trends in EEG-BCI for daily-life: Requirements for artifact removal." Biomedical Signal Processing and Control 31 (2017): 407-418.
- 20. Frisoli, Antonio, Claudio Loconsole, Daniele Leonardis, Filippo Banno, Michele Barsotti, Carmelo Chisari, and Massimo Bergamasco, "A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, no. 6 (2012): 1169-1179.
- 21. Cho, Jeong-Hyun, Ji-Hoon Jeong, Kyung-Hwan Shim, Dong-Joo Kim, and Seong-Whan Lee. "Classification of hand motions within EEG signals for non-invasive BCIbased robot hand control." In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 515-518. IEEE, 2018.

- 22. Van Eyndhoven, Simon, Tom Francart, and Alexander Bertrand. "EEG-informed attended speaker extraction from recorded speech mixtures with application in neuro-steered hearing prostheses." IEEE Transactions on Biomedical Engineering 64, no. 5 (2016): 1045-1056.
- 23. Chen, Xin, Yang Yu, Jingsheng Tang, Liang Zhou, Kaixuan Liu, Ziyuan Liu, Siming Chen et al. "Clinical Validation of BCI-Controlled Wheelchairs in Subjects With Severe Spinal Cord Injury." IEEE Transactions on Neural Systems and Rehabilitation Engineering 30 (2022): 579-589.

- 25. El Ghoul, Oussama, and Achraf Othman. "Virtual reality for educating Sign Language using signing avatar: The future of creative learning for deaf students." In 2022 IEEE Global Engineering Education Conference (EDUCON), pp. 1269-1274. IEEE. 2022.
- 26. Kohli, Varun, Utkarsh Tripathi, Vinay Chamola, Bijay Kumar Rout, and Salil S. Kanhere. "A review on Virtual Reality and Augmented Reality use-cases of Brain **Computer Interface based applications** for smart cities." Microprocessors and Microsystems 88 (2022): 104392.
- 27. Brandman, David M., Tommy Hosman, Jad Saab, Michael C. Burkhart, Benjamin E. Shanahan, John G. Ciancibello, Anish A. Sarma et al. "Rapid calibration of an intracortical brain-computer interface for people with tetraplegia." Journal of neural engineering 15, no. 2 (2018): 026007.

Using Brain-Computer Interface to improve learning skills for students with disabilities a rapid review

- 54
- 28. Herweg, Andreas, Julian Gutzeit, Sonja Kleih, and Andrea Kübler. "Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation." Biological psychology 121 (2016): 117-124.
- 29. Kelly, D., Floreani, E. D., Jadavji, Z., Rowley, D., Zewdie, E. T., Anaraki, J. R., Bahari, H., Beckers, K., Castelane, K., Crawford, L., House, S., Rauh, C. A., Michaud, A., Mussi, M., Silver, J., Tuck, C., Adams, K., Andersen, J., Chau, T., . . . Kirton, A. (2020). Advancing **Brain-Computer Interface Applications** for Severely Disabled Children Through a Multidisciplinary National Network: Summary of the Inaugural Pediatric BCI Canada Meeting. Frontiers in Human Neuroscience. https://doi.org/10.3389/ fnhum.2020.593883
- 30. Powers, J. Clark, Kateryna Bieliaieva, Shuohao Wu, and Chang S. Nam. "The human factors and ergonomics of P300based brain-computer interfaces." Brain sciences 5, no. 3 (2015): 318-354.
- 31. Faller, Josef, Jennifer Cummings, Sameer Saproo, and Paul Sajda. "Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task." Proceedings of the National Academy of Sciences 116, no. 13 (2019): 6482-6490.
- 32. Khribi, Mohamed Koutheair, Achraf Othman, and Aisha Al-Sinani. "Toward Closing the Training and Knowledge Gap in ICT Accessibility and Inclusive Design Harnessing Open Educational Resources." In 2022 International Conference on Advanced Learning Technologies (ICALT), pp. 289-291. IEEE, 2022.

33. Tlili, Ahmed, Natalia Amelina, Daniel Burgos, Achraf Othman, Ronghuai Huang, Mohamed Jemni, Mirjana Lazor, Xiangling Zhang, and Ting-Wen Chang. "Remote Special Education During Crisis: COVID-19 as a Case Study." In Radical Solutions for Education in a Crisis Context, pp. 69-83. Springer, Singapore, 2021.

Tawasol Symbols

56

Usability Assessment of Delivery Applications for Visually Impaired People dependent on it. For example, such as A Case from Saudi Arabia

Hend S. Al-Khalifa and Bayan Albatati King Saud University, Riyadh, Saudi Arabia

Technology has become an essential part of our lives, and many of our daily tasks have become entirely dependent on it. For example, shopping for household necessities, booking travel tickets, going to places using all different kinds of transportations etc., are quickly done through mobile phones. And because of how it is easy to use mobile phones, we may forget that others, such as the visually impaired, may face many difficulties when using them. In this research two of the most widely used delivery applications in Saudi Arabia, namely, Hungerstation and Mrsool were studied and evaluated in order to assess their usability for people with visual impairments. **Evaluation results show** that both applications have usability problems. Nonetheless, the results of the standard ISO usability metrics (Effectiveness. Efficiency and satisfaction) showed that Hungerstation is more usable than Mrsool.

Nafath Issue 21

57

Over the past years, the development of mobile devices was accompanied by many tools and applications that help visually impaired people use them. People who have blindness can use technology today to do many things such as sending emails, surfing the Internet, making purchases, and much more. Applications such as screen readers and Braille keyboards allowed them to use various electronic devices independently, which solved many of the accessibility obstacles for blind individuals.

According to [1], it is estimated that 43 million people are blind worldwide in 2020, and around 295 million people will suffer in the future from moderate to severe visual impairment. As for Saudi Arabia, nearly one million people in the Kingdom have a visual impairment [2].

Due to the high percentage of people with visual impairments in Saudi Arabia, our aim in this research is to evaluate the usability of two popular and widely used local delivery applications namely: Hungerstation (https://hungerstation.com) and Mrsool (https://mrsool.co/). These two applications are specialized in delivering food from restaurants, cafes and grocery stores, as well as other types of delivery such as delivering necessities from one place to another.

Targeting the two delivery applications was based on their popularity by both sighted persons as well as visually impaired persons, based on interviews we conducted with visually impaired people. Therefore, this research aims to measure the usability of the selected delivery applications for visually impaired people, find the issues and problems in each application and finally give some recommendations to improve the usability of the applications to be used effectively by people with visual impairments.

Methodology

Our research has gone through several stages of data collection and analysis as follows:

Preliminary stage

Consists of two steps: (1) distributing a questionnaire to visually impaired people to find out the most commonly used applications and websites. Then (2) interviewing five blind people to find the most widely used delivery applications.

Testing stage

Consists of two steps: (1) pilot testing and (2) user testing. In the pilot testing, we tested three delivery applications (Hungerstation, Mrsool and Jahez) with four visually impaired people. We tested Jahez because it was among the top chart of the Apple store for food and drinks category. But it was excluded from the study due to its very poor usability.

While in the user testing step, ten visually impaired people (5 females and 5 males) used both applications, following our test protocol while observing and recording the whole experiment.

Usability Assessment of Delivery Applications for Visually Impaired People

Usability Assessment of Delivery Applications for Visually Impaired People A Case from Saudi Arabia

Table 1 summarizes the participants' demographics.

	Age	Gender	Degree	Have you ever used delivery apps	what language do you prefer to use the apps with?	English language level	Technical knowledge Level	How many years have you been using the iPhone with the VoiceOver?
P1	28	М	Master	Yes	Arabic	Beginner	Advanced	5 years and above
P2	28	М	Master	Yes	Arabic	Beginner	Intermediate	5 years and above
P3	24	F	Master	Yes	Arabic	Beginner	Intermediate	5 years and above
P4	22	М	Bachelor	Yes	Arabic	Intermediate	Intermediate	5 years and above
P5	23	М	Bachelor	Yes	Arabic	Beginner	Intermediate	5 years and above
P6	20	F	Bachelor	Yes	Arabic	Intermediate	Advanced	5 years and above
P7	22	F	Bachelor	Yes	Arabic	Intermediate	Intermediate	5 years and above
P8	28	М	Bachelor	Yes	English	Intermediate	Intermediate	1-5 years
P9	20	F	Bachelor	No	Arabic	Beginner	Intermediate	5 years and above
P10	30	F	Bachelor	No	Arabic	Beginner	Intermediate	5 years and above

All the participants in the study were users of iOS devices of various models from iPhone 6 to iPhone 12 pro. An overview of the required tasks was given for each of them before the start of the testing process. A Total number of twelve tasks were tested and were divided into the following types: the search and selection process, including (choosing the restaurant, choosing the required products), the checkout process, including (choosing the payment method, adding notes, choosing the delivery location, and finally order). Tasks were arranged to correspond to the sequence of their appearance in both applications, and were done entirely depending only on the VoiceOver of the iPhone.

Quantitative methods were used in this research through the use of ISO usability metrics [3] which are: effectiveness, efficiency and satisfaction. Effectiveness is defined as the ability of a user to execute a specific task in a given setting. It can be calculated by measuring the completion rate of the task or a stage in completing a task. Efficiency is the user's ability to complete a given task quickly and accurately or time on task. Efficiency can be calculated by Nafath Issue 21

59

how long each task takes to complete. Both Effectiveness and Efficiency can be calculated in a laboratory setting or by observation. While the level of comfort and enjoyment experienced or able to accept the expectations and requirements by a user is referred to as user satisfaction, Satisfaction is a subjective concept that can be measured through a survey, such as a Likertscale rating [4].

Results and Discussion

The results of the usability evaluation showed that the most popular local delivery applications need to be improved, as some problems were found that hinder usability for people with visual impairments. Also, usability testing should be conducted by blind people before and after the applications are released to their potential users to avoid any future problems.

To measure the usability of the two applications, the following usability metrics were used: effectiveness, efficiency and satisfaction. The previous metrics showed that Hungerstation is more usable than Mrsool, with an overall effectiveness rate of 92.27%, average time for each task equals 1:03 minutes, and satisfaction equal to 81.95.

While Mrsool application got an overall effectiveness rate equals to 90.83%, an average time for each task of 1:13 minutes and a satisfaction score equals to 50.25.

The study of these applications allowed us to know the problems in each application and elicited some suggestions to improve the usability of delivery applications used by visually impaired people. We also hope that our research becomes the beginning of conducting similar research on other local applications of all kinds.

Design Recommendation

Here are some suggestions to improve the usability of delivery applications based on our research findings:

- 1. Navigation with VoiceOver and gesture: 3. Describe and label the page elements, one the blind person relies on the movement of of the most important points that must his/her hand to move between the content be taken into account during the design, of the page while hearing VoiceOver to as the absence of a label for a button understand each element's location, which or an option makes the use of the blind must be taken into account when designing impossible. the page layout.
- 2. Adherence to the standard design recommendations provided by iOS and Android, such as placing the back button at the top left of the page in the English interface and its top-right in the Arabic interface.

Usability Assessment of Delivery **Applications for Visually Impaired People**

- 4. Reduce notifications and link them with a sound indicating their appearance if necessary; because the blind cannot know if a notification is appearing on the screen.
- 5. Use the correct terms for the buttons; for example, use the word "close" instead of "OK" to refer to the need to close a specific notification before returning to navigate through the page. This mistake was noticed on Mrsool select location page.

Usability Assessment of Delivery **Applications for Visually Impaired People** A Case from Saudi Arabia

60

- 6. Do not use layering, the appearance of parts of another page or an option as a layer above the main page is a bad and distracting factor for the blind, as the VoiceOver reads the contents for the two layers at the same time.
- 7. Do not use drop-down lists; as the blind user could not guess the type of a list and often clicks on it to be read by VoiceOver, which leads to its closure if it was a dropdown list.
- 8. Translate all buttons and page contents of the User Interface (UI), the lack of translation of the screen content may hinder the blind from accessing many options and features.
- 9. Separate the options that should allow the blind to perform operations on them, such as deleting and modifying a specific product in the cart. As product quantity reduction in Hungerstation application could not be tested in this research since the VoiceOver was reading all products together and does not separate them, and also the use of hand gestures to indicate and select only one product to delete did not work either, which indicates both a major accessibility and usability problems.
- 10. Do not separate a field from its description, such as the writing field, as the blind person is going to press on the description of the field repeatedly, thinking that the keyboard will appear like what happened while testing Mrsool application.
- 11. Add a search field to the map page is also necessary if the blind person wants to make a request for a location other than his current location.
- 12. Make sure the application update does not change the usability of the application; it was noticed when doing the experiments in this research that some of the old updates had higher usability level than the new ones.

References

- 1. M. Burton et al., "The Lancet Global Health Commission on Global Eye Health: vision beyond 2020," The Lancet Global Health, vol. 9, no. 4, pp. e489-e551, Apr. 2021, doi: 10.1016/S2214-109X(20)30488-5.
- "APD هيئة رعاية الأشخاص ذوى الإعاقة APD" https://apd.gov.sa (accessed July 1, 2022).
- 3. "ISO 9241-11:2018(en), Ergonomics of human-system interaction -Part 11: Usability: Definitions and concepts." https://www.iso.org/obp/ ui/#iso:std:iso:9241:-11:ed-2:v1:en (accessed July 1, 2022).
- 4. Sunardi, G. Desak, and Gintoro, "List of Most Usability Evaluation in Mobile **Application: A Systematic Literature** Review," in 2020 International Conference on Information Management and Technology (ICIMTech), Bandung, Indonesia, Aug. 2020, pp. 283–287. doi: 10.1109/ICIMTech50083.2020.9211160.

بوابة برايل العربي الموحّد

braille.mada.org.qa

Unified Arabic Braille Portal

62

Mada Fabrab مدعب فاب لاب

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

Achraf Othman. Shahbaz Ahmed. Al Danna Al-Mohannadi Mada Center

Nafath Issue 21 Mada FabLab

63

Fabrication laboratories (FabLabs) are utilized to materialize concepts. They can improve cognitive and creative abilities when used in a design-learning situation. Numerous studies have attempted to comprehend the relationship between makerspaces and creativity in a variety of disciplines, with the capacity to generate innovative consequences in makerspaces dependent on creativity. However, a comprehensive study that provides a holistic perspective on the contributions of labs as inclusive places that stimulate creativity for people with disabilities is absent. In order to address

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

> this study gap, the paper that follows provides an overview of FabLabs, makerspaces, and creativity and introduce the first of its kind MadaFabLab. as the first inclusive fablab in the world designed and tailored for innovators with disabilities "MadaFabLab". The studies revealed that fablabs contribute to the development of creative person, product, physical, and social surroundings, as well as creative process. In addition, the MadaFabLab, a novel inclusive idea. fosters problem-solving, collaborative, and communication skills. and offers appealing locations and tools for the development of creative solutions to real-world challenges and needs identified by people with disabilities. We identified and analyzed five important themes pertaining to technical skills, technological and environmental factors, STEM learning, and skill development, and focused on their significance for fostering creativity in an inclusive FabLab.

Mada FabLab

Nafath Issue 21

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

64

A FabLab is defined as "a creative, uniquely adaptable learning environment with tools and materials, which can be physical and/or virtual, where students have the opportunity to explore, design, play, tinker, collaborate, inquire, experiment, solve problems, and invent" [1]. In FabLabs, a greater emphasis is placed on the use of often-predefined equipment (e.g., 3D printers, laser cutters, or electronic workbenches) and the breadth of training related to this equipment. This technology enables computer support and subtractive manufacturing, design and rapid prototyping, as well as the simple materialization of highly customized products. Digital fabrication technology is regarded as an integral component of FabLabs, invention studios, and, personal fabrication setups. Schmidt [2] coined "open creative labs" as a catch-all term for all labs mentioned in the literature: entrepreneurship, public libraries, design education, higher education, science, technology, engineering, and mathematics (STEM) education, medical practices, and sustainability [3]. The majority of research conducted on FabLabs characterized them as creative, built environments that assist students, engineers, designers, architects, and healthcare professionals in developing innovative solutions to real-world problems. In this regard, the stimulating atmosphere and environment promotes the development of creative ideas and solutions. There is evidence of a growing impact of workspace environments such as makerspaces on innovation and creativity [4]. It was discovered, for instance, that the quality of the physical environment positively affects individual and team creativity. In contrast, negative characteristics of the physical environment can inhibit creativity [5].

Digital fabrication technology utilized in FabLabs influences users' thinking, ideas, creation skills, and ability to produce creative solutions in a wide range of domains, including art, science, and engineering. A study conducted by Saorin et al. [6] in makerspaces concluded that digital editing tools and 3D printers contributed to the development of engineering students' creative ability. In addition to fostering the development of creative skills, makerspaces are beneficial for fostering collaboration, problem-solving, and communication in STEM (science, technology, engineering, and mathematics) fields [7].

This article seeks to comprehend the influence of built environments, such as FabLab, on creativity according to person, process, product, (physical and social) environmental characteristics, and collaboration aspects, with a focus on people with disabilities. Four findings were outlined in the present article and a dedicated section for Mada's initiative to establish an inclusive Fablab called "MadaFabLab".

نحو آفاق جحيد

id your dream

Nafath Issue 21

65

Mada FabLab

Learning and Skills

Development in STEM Education

Fablab plays a significant role in helping students Creativity is necessary for success in numerous with disabilities develop their creative thinking, fields, including design, and engineering. It is communication, and collaboration skills, essential to develop innovative alternative solutions particularly when the "learning by doing" approach to a problem. According to a study in the field is implemented. The type of pedagogy utilized of engineering, makerspaces equipped with in Fablabs was another factor that contributed digital editing tools and 3D printers stimulate to the development of the students' creative creativity [7]. Similarly, Duenyas and Perkins abilities. Students' motivation to learn, think, demonstrated that makerspaces that facilitate and act creatively was primarily influenced by engagement with a variety of tools and materials their enjoyment of the learning process and help users develop creative competencies such as the availability of a technologically supportive self-awareness, self-esteem, the ability to cope with negative emotions, and the ability to form environment. Exploration, inquiry, and examination of materials were also found to foster creative positive relationships [8]. Similarly, Taheri et al. outcomes from an experiential standpoint. [9] demonstrated that FabLabs contributed to a Additionally, research on FabLabs examined strong sense of community, self-confidence, and the motivation for creativity in STEM education. entrepreneurial abilities for engineering courses, Smith demonstrated that Fablabs in STEM can be in addition to fostering creativity. In addition, they utilized to improve creative skills and abilities such increased their problem-solving, communication, as critical thinking, problem solving, and design and teamwork skills. Hoople et al. [10] discovered collaboration. In this regard, material artifacts that the presence of experienced practitioners and discarded materials found in makerspaces and explicit rules of engagement were crucial for can have significant implications for learning both formal and informal creative competency how to foster creativity. Particularly, FabLabs development inside makerspaces. In conclusion, foster conducive learning environments where FabLabs and makerspaces play a crucial role prototyping and other design activities are essential in the development of individual creative skills, for the development of creative thought, problemnotably in engineering fields. solving, and collaborative skills.

$\left\{ O \right\}$ سافر خطواتك لبدء العمل في أرجاء المكان طريقك نحو المستقبل imagine infuse travel your future your life your journey

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

Fostering Individual Creative Competence

Mada FabLab

66

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

Creative Product Development

Creative products must not just be creative and distinctive, but also useful, practical, and/or functional. The development of creative products is regarded as a complicated endeavor needing multidisciplinary teamwork with the necessary instruments. In this sense, interdisciplinary collaboration enabled using digital fabrication technologies in FabLabs can stimulate the inventiveness of the outcomes (i.e., prototypes and products). According to research in nursing and engineering, collaboration in a FabLab environment helps uncover real-world challenges, produce innovative ideas, and develop commercially viable prototypes. Other studies have also highlighted the favorable role makerspaces play in the conception and development of sustainable, creative, and viable goods [11]. According to the reviewed articles, FabLabs and makerspaces should be deemed ideal environments to produce creative outputs. As settings that support built environments, these places seem to have the right physical conditions and resources for developing and making real ideas into unique and long-lasting goods.

Fostering Creativity through Motivational and Inspiring Learning Environments

When supported by proper means, such as digital fabrication tools, makerspaces can be viewed as dynamic learning environments where users engage in creative endeavors [12]. As a learning setting, makerspaces enable individuals to express themselves, hence increasing the likelihood of developing creative solutions. Trahan et al. discovered that providing a learning environment in which students and teachers were permitted to fail encouraged them to experiment and explore without fear, as well as to include other participants in their creative activities [13].

Forest et al. [14] investigated the effect makerspaces have on self-perception. They discovered that 90% of users believed makerspaces as learning settings encouraged them to pursue occupations requiring creativity, design, innovation, and invention. In addition, their research revealed that design-build education fosters innovation, creativity, and entrepreneurship in engineering. Studies have demonstrated that FabLabs and makerspaces have a good impact on the selfexpression, inspiration, motivation, and creative capacities of their users through the provision of encouraging and supportive physical and social environments [15].

Nafath Issue 21

67

Mada FabLab

MadaFabLab special needs, but also their content will be designed with the same strategy, combining Fablabs have the potential to alter fabrication assistive technologies and online courses with patterns, promote science, technology, engineering, digital manufacturing. This strategy will facilitate and mathematics (STEM) skills, create enterprises the process of altering social norms, beliefs, and and jobs, and stimulate economic growth and attitudes, as well as addressing unconscious productivity. They accomplish this by allowing prejudices and stigma, and establishing policies virtually any member of the general public and procedures in training centers that are in line with creative ideas to participate in the design, with these changes. In a world where change production, and distribution of goods and occurs at an ever-increasing rate, driven by science services. An expanding global network of Fablabs and innovation, inclusive education and training has established an altogether new arena of must utilize technology to promote universal opportunities at the local level to drive creativity, access and increasingly individualized learning. invention, and applied research across industries. As stated in the introduction, however, just as the internet has not been distributed consistently or inclusively to everyone, some Fablabs around the world have made the same error. Their approach disregards inclusive design in favor of cooperation, resulting in "one size fits one person" as opposed to the "universal design" dictum of "one size fits all."

Incredibly, the process that Mada Center has been creating to construct and deploy the world's first Fablab intended exclusively for persons with disabilities and become a global standard named "MadaFabLab" (https://fablab.mada.org.qa) supported through the Mada Innovation Program [16]. Since not only its space and furniture will be suggested for the integration of people with

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

Mada FabLab

Nafath Issue 21

an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities

68

References

- 1. Loertscher, D.V.; Preddy, L.; Derry, B. Makerspaces in the School Library Learning Commons and the UTEC Maker Model. Teach. Libr. 2013, 41, 48-51.
- 2. Schmidt, S.; Brinks, V. Open Creative Labs: Spatial Settings at the Intersection of Communities and Organizations. Creat. Innov. Manag. 2017, 26, 291-299.
- 3. Soomro, S.A.; Casakin, H.; Georgiev, G.V. Sustainable Design and Prototyping Using Digital Fabrication Tools for Education. Sustainability 2021, 13, 1196.
- 4. Kryssanov, V.V.; Tamaki, H.; Kitamura, S. Understanding Design Fundamentals: How Synthesis and Analysis Drive Creativity, Resulting in Emergence. Artif. Intell. Eng. 2001, 15, 329-342.
- 5. Sidawi, B. The Impact of Social Interaction and Communications on Innovation in the Architectural Design Studio. Buildings 2012, 2, 203–217.
- 6. Saorín, J.L.; Melian-Díaz, D.; Bonnet, A.; Carbonell Carrera, C.; Meier, C.; De La Torre-Cantero, J. Makerspace Teaching-Learning Environment to Enhance Creative Competence in Engineering Students. Think. Ski. Creat. 2017. 23. 188-198.
- 7. Dede, C. Comparing Frameworks for 21st Century Skills. In 21st Century Skills: Rethinking How Students Learn; Solution Tree Press: Bloomington, IN, USA, 2010; pp. 51-76.
- 8. Duenyas, D.L.; Perkins, R. Making Space for a Makerspace in Counselor Education: The Creative Experiences of Counseling Graduate Students. J. Creat. Ment. Health 2021, 16, 537-547.
- 9. Taheri, P.; Robbins, P.; Maalej, S. Makerspaces in First-Year Engineering Education. Educ. Sci. 2020, 10, 8.

- 10. Hoople, G.D.; Mejia, J.A.; Hoffoss, D.; Devadoss, S.L. Makerspaces on the Continuum: Examining Undergraduate Student Learning in Formal and Informal Settings. Int. J. Eng. Educ. 2020, 36, 1184-1195.
- 11. Albala, L.; Bober, T.; Mallozzi, M.; Koeneke-Hernandez, L.; Ku, B. Design-Thinking, Making, and Innovating: Fresh Tools for the Physician's Toolbox. Univ. J. Educ. Res. 2018.6.179-183.
- 12. Barrett, S.; Dousay, T.; Kerr, T.; Schmidt, L.; Gellis, B.; Ballard, J. Library and Student Innovation Center: MakerSpace! In Proceedings of the ASEE Annual Conference & Exposition, Salt Lake City, UT, USA. 23 June 2018.
- 13. Trahan, K.; Romero, S.M.; Ramos, R.D.A.; Zollars, J.; Tananis, C. Making Success: What Does Large-Scale Integration of Making into a Middle and High School Look Like? Improv. Sch. 2019, 22, 144–157.
- 14. Forest, C.R.; Moore, R.A.; Jariwala, A.S.; Fasse, B.B.; Linsey, J.; Newstetter, W.; Ngo, P.; Quintero, C. The Invention Studio: A University Maker Space and Culture. Available online: https://advances.asee. org/wp-content/uploads/vol04/issue02/ papers/AEE-14-1-Forest.pdf (accessed on 6 October 2022).
- 15. Soomro, S. A., Casakin, H., & Georgiev, G. V. (2022). A Systematic Review on FabLab **Environments and Creativity: Implications** for Design. Buildings, 12(6), 804.
- 16. Al Thani, D., Al Tamimi, A., Othman, A., Habib, A., Lahiri, A., & Ahmed, S. (2019, December). Mada Innovation Program: A Go-to-Market ecosystem for Arabic Accessibility Solutions. In 2019 7th International conference on ICT & Accessibility (ICTA) (pp. 1-3). IEEE.

- بيئة شاملة للإبداع والابتكار في التصنيع والعلوم والتكنولوجيا والهندسة والرياضيات وتأثيرها على الأشخاص ذوى الإعاقة
- 10. Hoople, G.D.; Mejia, J.A.; Hoffoss, D.; Devadoss, S.L. Makerspaces on the Continuum: Examining Undergraduate Student Learning in Formal and Informal Settings. Int. J. Eng. Educ. 2020, 36, 1184-1195.
- 11. Albala, L.; Bober, T.; Mallozzi, M.; Koeneke-Hernandez, L.; Ku, B. Design-Thinking, Making, and Innovating: Fresh Tools for the Physician's Toolbox. Univ. J. Educ. Res. 2018.6.179-183.
- 12. Barrett, S.; Dousay, T.; Kerr, T.; Schmidt, L.; Gellis, B.; Ballard, J. Library and Student Innovation Center: MakerSpace! In Proceedings of the ASEE Annual Conference & Exposition, Salt Lake City, UT, USA. 23 June 2018.
- 13. Trahan, K.; Romero, S.M.; Ramos, R.D.A.; Zollars, J.; Tananis, C. Making Success: What Does Large-Scale Integration of Making into a Middle and High School Look Like? Improv. Sch. 2019, 22, 144-157.
- 14. Forest, C.R.; Moore, R.A.; Jariwala, A.S.; Fasse, B.B.; Linsey, J.; Newstetter, W.; Ngo, P.; Quintero, C. The Invention Studio: A University Maker Space and Culture. Available online: https://advances.asee. org/wp-content/uploads/vol04/issue02/ papers/AEE-14-1-Forest.pdf (accessed on 6 October 2022).
- 15. Soomro, S. A., Casakin, H., & Georgiev, G. V. (2022). A Systematic Review on FabLab **Environments and Creativity: Implications** for Design. Buildings, 12(6), 804.
- 16. Al Thani, D., Al Tamimi, A., Othman, A., Habib, A., Lahiri, A., & Ahmed, S. (2019, December). Mada Innovation Program: A Go-to-Market ecosystem for Arabic Accessibility Solutions. In 2019 7th International conference on ICT & Accessibility (ICTA) (pp. 1-3). IEEE.

نفاذ العدد ٢١

٦٨

المراجع

- 1. Loertscher, D.V.; Preddy, L.; Derry, B. Makerspaces in the School Library Learning Commons and the UTEC Maker Model. Teach. Libr. 2013, 41, 48-51.
- 2. Schmidt, S.; Brinks, V. Open Creative Labs: Spatial Settings at the Intersection of Communities and Organizations. Creat. Innov. Manag. 2017, 26, 291–299.
- 3. Soomro, S.A.; Casakin, H.; Georgiev, G.V. Sustainable Design and Prototyping Using Digital Fabrication Tools for Education. Sustainability 2021, 13, 1196.
- 4. Kryssanov, V.V.; Tamaki, H.; Kitamura, S. Understanding Design Fundamentals: How Synthesis and Analysis Drive Creativity, Resulting in Emergence. Artif. Intell. Eng. 2001, 15, 329-342.
- 5. Sidawi, B. The Impact of Social Interaction and Communications on Innovation in the Architectural Design Studio. Buildings 2012, 2, 203–217.
- 6. Saorín, J.L.; Melian-Díaz, D.; Bonnet, A.; Carbonell Carrera, C.; Meier, C.; De La Torre-Cantero, J. Makerspace Teaching-Learning Environment to Enhance Creative Competence in Engineering Students. Think. Ski. Creat. 2017. 23. 188-198.
- 7. Dede, C. Comparing Frameworks for 21st Century Skills. In 21st Century Skills: Rethinking How Students Learn; Solution Tree Press: Bloomington, IN, USA, 2010; pp. 51-76.
- 8. Duenyas, D.L.; Perkins, R. Making Space for a Makerspace in Counselor Education: The Creative Experiences of Counseling Graduate Students. J. Creat. Ment. Health 2021.16.537-547.
- 9. Taheri, P.; Robbins, P.; Maalej, S. Makerspaces in First-Year Engineering Education. Educ. Sci. 2020, 10, 8.