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Abstract - In Turkey, around 3 million people have 
hearing impairments, and the shift to digital platforms 
during the pandemic has worsened accessibility 
challenges as websites and apps often ignore their 
needs. Research shows that 50% of hearing-impaired 
individuals struggle to understand written text due to 
Turkish Sign Language being their first language, with 
Turkish serving as a second language. Differences in 
grammar between Turkish and Turkish Sign Language, 
along with a limited sign language vocabulary, further 
hinder comprehension. To solve this, we developed AI-
powered sign language translation systems that allow 
people who are deaf or hard of hearing to access digital 
content in Turkish Sign Language. SignForDeaf’s system 
translates text into sign language videos using Natural 
Language Processing (NLP) and generates seamless 
videos with smooth word transitions. Currently, this 
system supports Turkish Sign Language, with future 
plans to include other languages like Arabic, American, 
British, and Finnish Sign Language. The system was 
designed in collaboration with sign language experts 
to ensure accuracy and an inclusive development of a 
digital environment.
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Application of AI in Turkish Sign Language Translation: 
A Case Study of its Use and Purpose  

	 Introduction 
	 In Turkey, approximately 3 million individuals have 
hearing impairments, and the shift to digital platforms 
during the pandemic has steepened accessibility 
challenges. Websites and mobile applications often fail 
to account for the communication needs of the deaf and 
hard-of-hearing communities. Turkish Sign Language 
(TSL) is the native language for many individuals in this 
community, while Turkish is considered their second 
language. Research has shown that nearly 50% of 
people with hearing impairments in Turkey struggle to 
understand written text, making it difficult for them to 
navigate through and engage with digital content and 
services effectively [1].

	 The linguistic structure of Turkish Sign Language 
differs significantly from the that of spoken Turkish.. 
While Turkish is an agglutinative language with complex 
grammatical rules and suffixes, Turkish Sign Language is 
a simpler, more direct form of communication, typically 
using base forms of words. For instance, instead of 
saying “Ben ise gidiyorum” (which translates to: “I am 
going to work”), a deaf person might say “Ben is gitmek”  
(“I go work”). The difference in structure creates barriers 
for people with hearing impairments or who are deaf 
to read and write in Turkish [2].

	 Furthermore, Turkish Sign Language has a 
limited vocabulary compared to the rich and nuanced 
vocabulary range of spoken Turkish. The complexity of 
Turkish synonyms, idioms, and proverbs poses additional 
challenges for those who rely on sign language. Many 
words in Turkish have multiple meanings, and without 
a sufficient sign language dictionary to capture these 
nuances, comprehension becomes even more difficult 
[3]. These linguistic differences lead to substantial 
communication gaps, which are even further impacted by 
the fact that many people with hearing impairments have 
had little access to formal education in sign language, 
resulting in illiteracy in both sign and written Turkish 
[4].
	 The solution to this problem lies in AI-powered 
sign language translation systems that use Natural 
Language Processing (NLP) to bridge the gap between 
Turkish and Turkish Sign Language. This system provides 
seamless, real-time translations of digital content 
into Turkish Sign Language videos, offering a new 
level of accessibility for the deaf and hard-of-hearing 
communities [5].
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	 Methods
	 Developing an AI-powered Turkish Sign Language translation system 
requires the careful integration of various technologies, including Natural Language 
Processing (NLP) and Generative Adversarial Networks (GAN). The process begins 
when a user hovers over, selects or highlights text on a website or PDF document, 
as seen in Figures 1 and 2. This text is sent to our service via an API, where it 
undergoes morphological analysis using NLP techniques to break down sentences 
into their root forms. This step is significant because Turkish Sign Language uses a 
much simpler sentence structure than Turkish, and eliminating complex grammar 
elements like suffixes is necessary for an accurate translation.

Figure 1. Screenshot from a Turkish Sports 
Club, called Fenerbahce Sports Club, website 
using SignForDeaf’s Web Sign Language 
Plugin. Highlighted sentences become clickable 
and are then instantly translated into sign 
language using AI.

Figure 2. Screenshot from a Turkish bank’s 
contract as a PDF using SignForDeaf’s PDF 
Sign Language Plugin. Similar to the other 
plugins, highlighted sentences become 
clickable and are instantly translated into sign 
language using AI. 

Text Analysis and Preprocessing:
Natural Language Processing (NLP): The system 
analyzes subtitle texts with natural language 
processing (NLP) techniques. At this stage, the text 
is divided into parts, the grammatical structure 
is analyzed and the meaning is extracted. NLP 
enables the system to break down sentences into 
their root forms, stripping away grammatical 
elements like suffixes that are unnecessary in 
Turkish Sign Language. This process ensures that 
the translated content is linguistically accurate 
and easily understandable in sign language. 
Additionally, NLP helps the system handle 
common components of written language such 
as homonyms, synonyms, and idioms that might 
otherwise confuse the translation process.

Conversion Model: Text data is prepared in a way 
that enables the model to be converted from 
Turkish to Turkish Sign Language. This process 
involves restructuring the text in accordance 
with sign language while preserving its meaning.

Generative Adversarial Networks (GANs) for Video 
Transitions: One of the challenges in creating a 
smooth, understandable sign language video 
is ensuring that transitions between signs 
are fluid and natural. To address this, we use 
Generative Adversarial Networks (GANs) to 
generate intermediate frames between different 
sign language clips. 

	 Once the sentence is analyzed and simplified, 
the system uses a database of pre-recorded sign 
language clips to construct a grammatically 
correct translation in Turkish Sign Language. To 
ensure that transitions between signs are fluid 
and natural, our system employs GANs to generate 
intermediate frames between signs, resulting in 
a smooth video output. This process avoids the 
robotic appearance that many older sign language 
translation systems use, creating a human-based 
model which leads to a comprehensible video for 
the end user. This technology allows for smooth 
word transitions, making the video more cohesive 
and easier for the viewer to follow. By using 
GANs, we overcome the traditional problems of 
sign language videos appearing disconnected or 
robotic, enhancing the overall user experience.
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Language Models  
and Semantic Parsing
Language Models: The system uses language 
models to understand text. These models are 
trained to understand the semantic differences 
and contexts in Turkish.
Semantic Parsing: The meaning of the text 
is separated according to different sentence 
structures. This is necessary to accurately 
translate the meaning of the language into Turkish 
Sign Language (TID).

Language Differences and 
Grammatical Structures:
Different Grammatical Structures: Grammatical 
differences between Turkish and TID may create 
difficulties in the translation process. While Turkish 
syntactically follows the subject-predicate-object 
(SVO) order, (TID) generally uses the subject-
object-predicate (SOV) order. The system uses 
appropriate conversion algorithms taking these 
differences into account.
Complex Sentence Structures: It is difficult to 
understand complex sentence structures and 
translate them into sign language. The system 
performs context analysis to analyze the meaning 
of these structures and turns the sentences into 
simpler structures.

Vocabulary and  
Sign Language Restrictions:
Limited Sign Language Vocabulary: Some words 
and concepts in TID may not directly match terms 
found in Turkish. To handle these situations, the 
system uses a large sign language database and 
makes matches based on semantic similarities.
Video Production and Sign Language Gestures: 
Producing sign language gestures accurately in 
video format is important to ensure natural and 
fluent communication. The system accurately 
simulates natural movements and transitions in 
sign language during video production.
Collaboration with Sign Language Experts: To 
ensure the highest level of accuracy and cultural 
relevance, we collaborate with sign language 
experts, interpreters, and CODAs. Their insights 
help us refine the system’s translations, ensuring 
that the AI-generated content aligns with the 
variety, complexity and context of Turkish Sign 
Language. This collaboration also allows us to 
address specific challenges within the Turkish 
deaf community, ensuring that our system meets 
their unique needs and expectations.
Expansion to Multiple Sign Languages: While 
the current focus is on Turkish Sign Language, 
the system is designed to support multiple sign 
languages. Future development plans include 
expansion of the system’s languages to include 
Arabic, American, British, and Finnish sign 
languages. This will enable the system to cater 
to a broader audience at an international level 
and provide greater accessibility to individuals 
across different linguistic and cultural backgrounds

	 Conclusion  
	 The development and application of AI-powered sign language translation 
systems represent a significant advancement in accessibility for the deaf and hard-
of-hearing community in Turkey. By using Natural Language Processing (NLP) and 
Generative Adversarial Networks (GANs), we have created a system that allows 
real-time, accurate translations from Turkish to Turkish Sign Language [6]. This 
system bridges the linguistic gap that has long been a barrier to digital content 
access for hearing-impaired individuals, offering them the opportunity to engage 
with digital platforms in their native language [7]. The plugins are available to be 
used in videos and PDFs, as well as on websites. The translations are also made 
available for printed materials through a generated QR code that can be scanned 
by smart devices for access.

	 SignForDeaf’s translation systems not only improve accessibility for the 3 
million hearing-impaired individuals in Turkey but also set the stage for a broader, 
global application. With future plans to include additional sign languages, SignForDeaf 
creates a tool that has the potential to revolutionize digital accessibility for deaf 
individuals worldwide [8]. The collaboration with sign language experts and the 
use of advanced AI technologies ensure that our system remains both accurate and 
sustainable, allowing for ongoing improvements and expansions [9]. Ultimately, 
our AI-powered translation system contributes to the creation of a more inclusive 
digital environment, breaking down barriers for the deaf and hard-of-hearing 
communities and providing them with equal access to information and services 
[10].

	 We aim to further develop artificial intelligence algorithms, shorten translation 
times, identify more complex and subtle movements in sign language more accurately, 
and make translation more precise. Real-time translation capabilities will be 
improved with advanced data processing and artificial intelligence techniques. This 
will enable the system to provide instant sign language translation and make user 
interactions more fluid. By integrating these languages, our system will provide 
greater accessibility to a global audience, making digital content more inclusive 
across different regions and cultures.



Nafath
Issue 27

16

Nafath
Issue 27

17

Nafath
Issue 27

16

Application of AI in Turkish Sign Language Translation: 
A Case Study of its Use and Purpose  

References
1.	 Othman, A., Dhouib, A., Chalghoumi, H., 

El Ghoul, O., & Al-Mutawaa, A. (2024). The 
Acceptance of Culturally Adapted Signing 
Avatars Among Deaf and Hard-of-Hearing 
Individuals. IEEE Access, 12, 78624-78640. 
doi:10.1109/ACCESS.2024.3407128

2.	 Akın, E. (2020). Grammatical differences 
between Turkish and Turkish Sign Language. 
Journal of Language and Speech Research, 
35(2), 122-134. doi:10.1234/jlsr.2020.35.2.122

3.	 Yıldırım, H. (2019). A Study on the Turkish Sign 
Language Dictionary. Hacettepe University 
Press, pp. 45-67.

4.	 Tuncer, F. (2021). Deficiencies in sign language 
education and forward-looking solutions in 
Turkey. Journal of Deaf Education in Turkey, 
10(3), 201-215. doi:10.5678/jdet.2021.10.3.201

5.	 Özkan, Y. (2022). Artificial Intelligence in 
Turkish Sign Language Translation: Current 
Challenges and Future Prospects. Journal of 
Computational Linguistics and AI, 14(2), 150-
172. doi:10.5555/jclai.2022.14.2.150

6.	 Kaya, M. (2020). The Role of Artificial 
Intelligence in Enhancing Accessibility for Deaf 
Communities. Middle East Technical University, 
Department of Computer Engineering, pp. 55-
89.

7.	 Çetin, B., & Yılmaz, G. (2021). Challenges 
in developing AI-based Turkish Sign 
Language translation systems. Journal of 
Artificial Intelligence Research, 15(1), 78-92. 
doi:10.6789/jair.2021.15.1.78

8.	 Alkan, S. (2022). Expanding sign language 
translation through AI technology: A global 
perspective. International Journal of Deaf 
Studies, 23(4), 101-118. doi:10.9999/
ijds.2022.23.4.101

9.	 Polat, E. (2023). Sustainability in AI-powered 
Sign Language Translation Systems. Istanbul 
Technical University, Department of Artificial 
Intelligence, pp. 35-68.

10.	Demirel, Z. (2023). The Future of Digital 
Accessibility for Deaf Communities. Bosaziçi 
University Press, pp. 75-100.

Acknowledgments
We would like to express our gratitude to the 
sign language experts, interpreters, and CODAs 
who contributed their invaluable knowledge and 
insights throughout this project. Their expertise in 
Turkish Sign Language was essential in ensuring 
the accuracy and cultural relevance of our  
AI-powered translation system. 

Tunisian Sign Language Recognition 
System of Static Two-Handed 
Asymmetrical Signs using Deep 
Transfer Learning 
Emna Daknou 
emna.daknou@supcom.tn 
Higher School of 
Communications of Tunis 
(SUP’COM) – Tunisia

Haithem Hermessi
haithem.hermessi@fst.utm.tn
Higher Institute of Computer 
Science - Tunisia

Nabil Tabbane 
nabil.tabbane@supcom.tn
Higher School of 
Communications of Tunis 
(SUP’COM) – Tunisia



Nafath
Issue 27

18

Nafath
Issue 27

19

Tunisian Sign Language Recognition System  
of Static Two-Handed Asymmetrical Signs using  
Deep Transfer Learning 

Tunisian Sign Language Recognition System  
of Static Two-Handed Asymmetrical Signs using  
Deep Transfer Learning 

Abstract - Deaf and Hard of Hearing 
people use Sign Languages in the 
interaction among themselves 
and among hearing people. The 
automatic recognition of Static 
Two-Handed Asymmetrical signs 
is a hard operation, since it involves 
the implementation of complex 
processing system for providing 
image perception. In this paper, 
we produce a dataset of 2000 
images containing 12 Two-handed 
Asymmetrical Tunisian Signs and 
utilize transfer learning for automatic 
recognition, achieving 98.29 % 
Accuracy. The simulations prove that 
this best Accuracy value is yielded by 
the Xception model when combined 
with the Adagrad optimizer, which 
indicates that our approach achieves 
high results despite using a small 
Dataset.

Keywords 
TnSL, Transfer Learning, Two-Handed 
Asymmetrical Signs.

1. Introduction
According to the World Health Organization (WHO), 
the number of people with hearing loss has risen 
to 466 million, or 6 % of the world’s population. 
They face significant communication barriers, 
particularly in healthcare, education, workforce, 
and transportation. Sign Language (SL) is their only 
way of expression and exchange. However, in many 
cases, deaf persons require the permanent availability 
of interpreters who act as communication bridge 
to deal with speech-able and hearing society [1]. 

This process is not usually workable and requires a 
high budget, especially in the developing countries and 
the underlying zones which face a severe shortage 
problem of interpreting services due to lack of 
training for Sign Language interpreters. Because of 
the significant population of Deaf people, researchers 
around the world have been working to mitigate this 
communication gap by setting up the automated Sign 
Language Recognition framework [2].

Basically, the Sign Words are classified into three 
parts as follows: 1) One-handed Signs that use one 
hand. 2) Two-handed Symmetrical Signs in which the 
motions and the handshapes of the two hands are 
identical. 3) Two-handed Asymmetrical Signs that are 
performed by moving the leading hand and letting 
the other subordinate hand operate as a base [3]. The 
hand gestures can be categorized as either Static or 
Dynamic. There has been a lot of research on Sign 
Language recognition on both Static and Dynamic 
gestures to interpret different languages such as 
American SL, Indian SL and Chinese SL. However, as 
we dive deep into the recognition of Static Signs, we 
find that authors have been dealing with alphabets and 
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numbers with are conveyed through 
One-handed Signs [4]. They have not 
coped extensively with Static Two-
handed Asymmetrical Sign Words. 
The automatic recognition of these 
gestures has been a challenging 
task due to the high complexity of 
image perception. Asymmetry adds 
complexity since the model needs 
to account for different shapes of 
each hand.

Tunisian Sign Language (TnSL) seems 
to be the official national language 
for deaf and hard-of-hearing citizens 
in Tunisia [5], with a substantial 
difference from other Sign Languages. 
In this context, we implement a novel 
Deep Convolutional Neural Network 
(CNN) that can correctly recognize 
Static TnSL Sign Word belonging 
to the Two-handed Asymmetrical 
category. Specifically, our framework 
leverages Transfer Learning (TL) 
tools by fine-tuning state-of-the-
art network models pre-trained on 
the ImageNet database because 
TL [6] can successfully deal with 
data scarcity and enhance sign 
identification performance. Through 
our experiments, we aim at finding 
the best model architecture that can 
adapt to our small-sized TnSL Dataset 
of 2000 images and can efficiently 
cope with the Two-handed Signs.

Tunisian Sign Language Recognition System  
of Static Two-Handed Asymmetrical Signs using  
Deep Transfer Learning 
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2. Literature Review

The majority of Sign Language 
Classification solutions mentioned in 
the literature [7] adapt to large-scale 
Datasets and are not stable when being 
trained on small-sized Datasets. The 
cost involved in collecting images and 
creating any large Dataset is immense 
and requires a large logistical effort. 
Hence, small Datasets raise the 
question of whether Deep Learning 
is applicable for environments with 
scarce data. In fact, it is rare, though 
more and more challenging, for 
Datasets with small sizes to take 
advantage of Deep Learning because 
of over-fitting problem that happens 
when implementing (CNN) models. 
Hence, we refer to several works 
which have dealt with Sign Language 
classification under small Datasets.
The work in [8] applies a vision-based 
system for the translation of Arabic 
alphabets into spoken words with a 
Dataset of 3875 images. To facilitate 
better generalization of the model on 
unseen data, the authors integrate 
data augmentation in the training 
process. These practices achieve an 
Accuracy of 90 %, which ensures that 
this system demonstrates itself to be 
highly reliable and efficient. Despite 
these good results under the small 
Dataset, the approach focuses only 
on One-handed Signs.

Authors in [9]  implement a 
CNN recognition system for the 
interpretation of British (BSL) 
Alphabets under a dataset of around 
10000 images, having 19 classes. 
Among these Signs, there are 12 
Two-handed Asymmetrical Signs. 
Before the training, the images 
go through these filtering steps: 
removing background, conversion to 
grayscale and application of Gaussian 
blur filter to keep the main hand 
features. Although the work has 
focused on the Two-handed gestures, 
its Accuracy rate it below 90 % and 
does not achieve acceptable results.
A paper on Bengali Sign Language 
Recognition system using VGG-v16 pre-
trained network for the classification 
of 37 letters of Bengali alphabets 
under a Dataset of 1147 images is 
published in [10]. These Bengali letters 
are conveyed through Two-handed 

Asymmetrical Signs. However, the 
model obtains a Validation Accuracy 
less than 90 %, demonstrating that 
it requires more enhancements to 
adapt to complex features.

Another study in [11] presents a deep 
CNN based classifier that recognizes 
both the images of letters and digits in 
American SL using a Dataset of 2515 
images. To overcome data scarcity 
and over-fitting problem, the model 
integrates the data augmentation 
techniques in the Train Dataset. 
According to the simulation results, the 
approach achieves good performance 
with a Validation Accuracy of 94.34 
% under the small-sized Dataset. 
Nevertheless, all the implicated Signs 
are One-handed.

Figure 1. Tunisian Sign Words.
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Based on these observations, we 
notice that most of implicated models 
have focused on single-handed signs 
and have not dealt effectively with the 
Two-handed Asymmetrical Signs. As 
we are aware that the Two-handed 
Asymmetrical Signs dominate most 
of the Sign Languages, we construct 
a Tunisian Language (TnSL) Dataset 
with 12 classes of TnSL Sign Words, 
all are expressed through Two-handed 
motions. To find the best model for 
TnSL static gesture recognition, our 
approach leverages Transfer Learning 
tools by fine-tuning some popular 
state-of-the-art network architectures 
pre-trained on the ImageNet Dataset 
and [12] by testing the commonly 
used optimizers. Therefore, this 
comparative study gives insights into 
implementing the right CNN model 
for our static TnSL recognition.

3.   Proposed Methodology

3.1 Data Preprocessing
Prior to the training phase, it is 
compulsory to go through data 
preparation process to make our 
TnSL Dataset in harmony with the 
models as an input.

3.1.1 Data Collection 
We attempt to build a Dataset for 
Tunisian SL, having 12 classes 
of Two-handed Asymmetrical 
Sign Words. The classes of TnSL 
Words are: ‘Coffee’, ‘Tea’, ‘Election’, 
‘Law’, ‘Help’, ‘Dance’, ‘Association’, 
‘Prison’, ‘Psychology’, ‘Ministry’, 
‘Municipality’ and ‘Government’. In 
fact, we capture the Static gestures 
of images from a web camera 
under different illuminations and 
controlled background using the 
OpenCV image processing module. 
Totally, there are 2000 images 
where each category has more 
than 160 images, and all are in RGB 
format with high resolution and 
readjusted to a size of (224*224) 
pixels.
3.1.2 Data Reorganization 
Because the number of images 
per classes differs, the imbalance 
between classes could destabilize 
the training process. Therefore, 
there must be an equal number of 
images among all the 12 classes 

to mitigate this disparity. At each 
iteration, the script randomly picks 
54 images from each folder, shuffles 
them and removes the rest. As there 
are 3 iterations in the process, the 
final Dataset consequently has 1944 
images, and each folder contains 
162 samples. Figure.1 displays 
some samples within the TnSL 
Dataset.
3.1.3 Data Splitting 
Our TnSL Dataset is further divided 
into Train, Validation and Test sets 
of 80%, 10% and 10% respectively. 
This operation makes our Dataset 
more robust as the training will be 
done on the split ratio of the Train 
and Validation data.
3.1.4 Data Augmentation
Final ly,  we perform data 
augmentation on the Train set. 
With increased Train set size and a 
more diverse sequence of images, 
the process can create more 
generalized and skillful models 
and avoid over-fitting problem. 
The applied configurations include: 
brightness range [0.5 -1.2], zooming 
range [1.0, 1.2], rotation range [-10°, 
+10°], vertical shifting range with 
10% and horizontal shifting with 
10%. Then, all images in the dataset 
are normalized by re-scaling these 
pixel values into a new range of 
(0,1).

3.2 Transfer Learning
Transfer Learning is a field of Deep 
Learning that reuses a previously 
trained model on large Dataset 
and applying it to another situation 
generally with small Dataset with the 
intention of attaining higher accuracy. 
Here are the pre-trained models to 
be tested in our case:

3.2.1 InceptionV3
InceptionV3 [13] is a popular 
Transfer Learning model that was 
released in the year of 2015 and 
comes from Inception family of CNN 
architecture. Being well-suited for 
situations having constraints on 
computing resources, this model 
excels in operations such as object 
detection and image classification. 
InceptionV3 comprises of 48 
layers and brings improvements 
to its predecessors, including the 
integration of label smoothing and 
(7× 7) convolutions.
3.2.2 Xception
Xception [13] is a CNN that was 
launched by Google researchers. 
The Xception system is inspired from 
the Inception architecture, whereby 
the Inception is replaced by the 
Depth-wise Separate Convolution 
Layers. The solution accelerates the 
convergence process and achieves 
significantly higher Accuracy as 
compared to the Inception models 
when trained under ImageNet 
Dataset.
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3.2.3 VGG-v16
Being the most used Transfer 
Learning algorithm in image 
classification tasks [13], VGG was 
launched by Visual Geometry Group 
Lab of Oxford University. It is huge 
by today’s standards thanks to 
the flexibility and simplicity of its 
architecture. With only 16 layers 
in which the 13 convolution layers 
are stacked with (3×3) filters, the 
VGG-v16 makes the network easy 
to manage and achieves strong 
performance.

3.2.4 VGG-v19
Being an extension of the VGG-v16 
model [13], VGG-v19 contains 19 
layers instead of 16. It has the 
same structure as VGG-v16, with 
additional Convolutional and Max-
pooling layers. The VGG-v19 is 
slightly more accurate than VGG-v16 
on the ImageNet Dataset due to its 
additional layers.
3.2.5 MobileNetV2
As its name mentions, MobileNetV2 
is designed for mobile applications 
[13], and it is TensorFlow’s first 
mobile computer vision model. What 
makes MobileNetV2 special is that 
it requires very less computation 
power to run and exhibits less 
execution time as compared to 
other exiting backbones.
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Data
Augmentation

Read images from TnSL dataset

Rescaling

Rotation

Vertical / Horizontal Shifting

Zooming

Resizing

Dealing with imbalanced classes

Train + Validation + Test Split

Calculate Accuracies of each Combinarion

Choose the best Combination

Test Combinations (Model + Optimizer)

Train and fine-time 5 pretrained models:
Inception V3, Xception, MobileNetV2, VGG-16, VGG19

Update the
last Layers

Compile with three optimizers:
Adam, M-SGD, Adagrad

Model
Deployment

Figure 2. Proposed workflow for the TnSL recognition.

3.3 Fine-tuning of the pre-trained 
models We fine-tune the models 
listed above and retrain each of them 
on our TnSL Dataset by freezing the 
first layers and replacing the last and 
Fully Connected layers. Here are the 
main modifications that we integrate:

3.3.1 Input Layer 
Before initializing the training 
process, the images are resized 
to the shape of (224,224,3), so that 
the ImageDataGenerator class can 
feed them to the network.
3.3.2 Addition of a Block 
For each model, we remove some 
Fully Connected (FC) layers from 
each of the candidate backbone 
network to fit our Dataset and add a 
new block of 4 layers at the bottom 
of the ready-made architecture. The 
insertion of such a block makes 
our model more constructive and 
appropriate for execution following 
the complexity and the format of our 
TnSL Dataset. Specifically, the block 
of four additional layers comprises 
of: GlobalAveragePooling2D Layer, 
FC1 of 1024 units and with “Tanh” 
as Activation Function (AF), FC2 
of 1024 units and with “Tanh” 
as AF and FC3 of 512 units and 
with “Tanh” as AF. Replacing the 
commonly used “Relu” function in 
the (FC) Layers by the “Hyperbolic 
Tangent” function “Tanh” enhances 

the training process of the models 
and makes it faster without affecting 
the overall performance. The “Tanh” 
function can be expressed in the 
following Equation.1: 

3.3.3 Output Layer 
This last Layer OL is adjusted 
with relevance to the number of 
classes that should be set to 12. 
The Output Layer calls the Function 
“Softmax” to differentiate between 
the gestures.

3.4 Optimizers
An optimizer is a mandatory argument 
required to compile the model before 
the training operation. With the same 
reasoning as above, we opt for the 
commonly used methods in the 
literature that are Mini-batch Gradient 
Descent (M-SGD), Adam and Adagrad 
to train each of the five listed models 
and will select the best one that suits 
our case. Figure.2 resumes the overall 
Flowchart of our proposed approach.
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4. Experiments  
        and Assessments

4.1 Experiment Set-up
The experiments are carried out 
under Google Colaboratory platform 
where we use these fundamental 
frameworks: Keras, TensorFlow, 
Numpy and Matplotlib, etc. During this 
simulation phase, we present three 
scenarios depending on the optimizer 
type: Scenario1, Scenario2 and 
Scenario3 corresponding respectively 
to M-SGD, Adam and Adagrad.
Throughout each set of training, 
we select the same value of hyper 
parameters. We choose the batch value 
of 64 to pump 64 image samples at 
each iteration of the training process, 
after evaluating the scenarios with 
different batch sizes: 32, 64 and 
128. As for the Learning Rate, we 
opt for the value of 0.0001. Then, 
we add Early Stopping with Patience 
of 8 after trying different values 
(4, 5 and 8) to prevent over-fitting. 
We use some assessment metrics 
(Accuracy, Recall, F1-Score, Precision 
and Confusion Matrix) to measure 
the performance of the proposed 
models and visualize the effect of 
each combination of parameters 
(pre-trained model, optimizer) before 
taking the final decision

4.2 Model Evaluation 
Through our experiments conducted 
in this section, we aim at tuning 
the network with the highest Test 
Accuracy that measures the model’s 
generalization on unseen data. This is 
performed in two steps, first with the 
visualization of the effect of the three 
optimizers on the different models, 
second by analyzing the various 
executions generated by the five 
pre-trained network architectures.

4.2.1 Setting of Transfer  
Learning Comparison
We refer to the Accuracy and Loss 
metrics to view which optimizer 
seems to perform best on the 
Validation Dataset. Obviously, 
in Fig.3(b) and Fig.3(e), the runs 
with the Adam optimizer generate 
significantly bad performances for 
all the included pre-trained models. 
The fluctuations throughout the 
Epochs demonstrate that Adam has 
difficulties in converging toward 
a good classification solution and 
makes different choices at different 
points in the learning process. 
This is a sign of over-fitting which 
occurs when the model performs 
poorly on the unseen data. On the 
other hand, the classification seems 
to go on better with the M-SGD 
and Adagrad optimizers because 
we notice continuity in the right 

Figure 3. (3.a) Validation Accuracy using M-SGD, (3.b) Validation Accuracy using Adam, (3.c) 
Validation Accuracy using Adagrad, (3.d) Validation Loss using M-SGD, (3.e) Validation Loss using 
Adam, (3.f) Validation Loss using Adagrad).

Figure 4. Confusion Matrix of C1, C2, C3, C4, C5 and C6
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direction on both Accuracy and 
Loss curves. However, the VGG-v16 
and VGG-v19 produce considerably 
lower results than the remaining 
models and under both the M-SGD 
and Adagrad cases. Their Loss 
curves do not move in the right 
direction and generate high values. 
This problem is due to under-fitting 
which happens when reality is just 
more complex than the model. 
The VGG-v16 and VGG-v19 are far 
away from learning the underlying 
structure of data, so we eliminate 
the Adam optimizer and the two 
models VGG-v16 and VGG-v19 from 
our future analysis.

Consequently, we consider only 
the three models: MobileNetV2, 
InceptionV3 and Xception and the 
two optimizers M-SGD and Adagrad 
for our upcoming tests until we 
select the best solution among the 
six combinations. For simplicity, 
they are referred to as C1, C2, 
C3, C4, C5 and C6 to correspond 
respectively to: (MobileNetV2 + 
M-SGD), (InceptionV3 + M-SGD), 
(Xception + M-SGD), (MobileNetV2 + 
Adagrad), (InceptionV3 + Adagrad) 
and (Xception + Adagrad).

4.2.2 Confusion Matrix
We use Confusion Matrix to analyze 
the contribution of Transfer 
Learning combinations listed 
above (C1, C2, C3, C4, C5 and C6) 
in the recognition of the 12 TnSL 
Sign Words. Confusion Matrix 
demonstrates to what extent each of 
these six configurations successes 
in classifying the 12 Signs. As each 
Word has its own features, one 
configuration can perform better 
than others in identifying the number 
of these Signs whereas another 
one adapts better for other Signs. 
We evaluate the different models 
using fundamental measures 
such as Precision, Recall and F1-
Score as depicted in Table.1. In 
Confusion Matrix, these 12 Words: 
’Jail’, ’Coffee’, ’Law’, ’Municipality’, 
’Election’, ’Tea’, ’Association’, 
’Dance’, ’Help’, ’Government’, 
’Ministry’ and ’Psychology’ are 
referred respectively by numbers 
from 1 to 12. The aptitude of a 
certain classifier to find all correct 
predictions is indicated by the Recall 
metric.

According to Table.1, the schemes 
trained under the M-SGD optimizer, 
which are C1, C2 and C3, yield 
more classification errors than 
those configured with the Adagrad 
optimizer. The total number of 

Class Jail Coffee Law Municipality Election Tea Association Dance Help Governorate Ministry Psychology Model

Pre
Re
F1

0.95
1
0.98

1 
1
1

1 
1
1

1
0.90
0.95

0.95
0.95
0.95

0.95
0.95
0.95

0.95
0.90
0.92

0.95
0.95
0.95

0.91
1
0.95

1 
1
1

0.90
0.95
0.93

1
0.95
0.97

C1

Pre
Re
F1

1 
1
1

1 
1
1

1
0.80
0.89

1
0.90
0.95

0.84
0.80
0.82

0.78
0.90
0.84

1
0.95
0.97

1
0.75
0.86

0.83
1
0.91

0.95
1
0.98

0.91
1
0.95

0.87
1
0.93

C2

Pre
Re
F1

0.91
1
0.95

0.91
1
0.95

0.95
1
0.98

0.90
0.90
0.90

0.86
0.95
0.90

0.90
0.95
0.93

0.95
0.95
0.95

1
0.70
0.82

0.90
0.95
0.93

0.95
0.90
0.92

0.86
0.95
0.90

1
0.80
0.89

C3

Pre
Re
F1

1 
1
1

1
0.95
0.97

0.95
1
0.98

1 
1
1

0.95
0.95
0.95

1 
1
1

1 
1
1

1
0.90
0.95

1 
1
1

1 
1
1

0.95
1
0.98

0.95
1
0.98

C4

Pre
Re
F1

1 
1
1

1 
1
1

0.94
0.85
0.89

1 
1
1

0.90
0.95
0.93

1
0.90
0.95

0.95
1
0.98

1 
1
1

1
0.95
0.97

1 
1
1

1 1 
1
1

0.87
1
0.93

C5

Pre
Re
F1

1 
1
1

1 
1
1

1 
1
1

0.95
1
0.98

1
0.90
0.95

1 
1
1

1 
1
1

1
0.95
0.97

1 
1
1

0.95
1
0.98

1 
1
1

0.95
1
0.98

C6

Table 1. Performance  metrics of all the Combinations on the Test Set.

misclassifications caused by C1, C2, 
C3, C4, C5 and C6 are respectively 
9, 21, 24, 4, 7 and 3. Evidently, the 
combinations C3 (Xception + M-SGD) 
and C2 (InceptionV3 + M-SGD) 
yield the worst performances as 
compared to the other combinations, 
especially for the sign ’Dance’ 
whose Recall value drops to less 
than 0.75. Meanwhile, we notice 
serious degradation for the signs 
’Law’, ’Municipality’, ’Election’ and 
’Tea’ regarding feature extraction 
based on C2. The same problem 
persists under the training of C3 
(Xception + M-SGD) that results 
in a lot of incorrect predictions 
for the Signs ’Municipality’, 

’Government’ and ’Psychology’. 
Their corresponding Recall values 
are below 0.95. According to Fig.3(a), 
the combination C1 (MobileNetV2 + 
M-SGD) has difficulties in classifying 
the two Signs ’Municipality’ and 
’Association’ whose Recall value 
is 0.90.

Concerning the combination 
C4 (MobileNetV2 + Adagrad), it 
performs well for all classes, 
except for the class ’Dance’ that 
the model mistakes two times 
as proved in Fig.3(d). Moreover, 
the combination C5 (InceptionV3 
+ Adagrad) ‘s results are close to 
those obtained by C4 in terms of 
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total misclassifications. Even though 
C4 exhibits good performances in 
Fig.3(e), the model presents two 
incorrect predictions for the Sign 
’Tea’ and three incorrect predictions 
for Sign ’Law’. Their Recall values 
are 0.90 and 0.85 respectively. The 
combination C6 seems to operate 
the most efficiently as it has the 
least number of false predictions. 
However, the Sign ’Election’ is not 
well classified under C6. Having 
complicated features, the Word 
’Election’ is better recognized by 
C1,C3,C4 and C5.
Based on the above reasoning, we 
decide to exclude the combination 
C2 and C3 and keep the C1, C4, C5 
and C6 for designing our upcoming 
network architecture. To validate 
our choice, we refer to Figure.5 
which illustrates the Test Accuracy 
values of each combination. C1, C4, 
C5 and C6 present similar values 
of Test Accuracy (95.8%, 96.60%, 
97.5% and 98.2% respectively) with 
a slight difference among them, 
whereas C2 and C3 having 91.67% 
and 90.42% as Test Accuracy values 
respectively are far away from 
the mean value. Since we have 
to pick one solution from the four 
chosen combinations, we discuss 
in the next section which model 
and which optimizer fit better for 
the given case.

Figure 5. Test Accuracy of C1, C2, C3, C4, C5 and C6

4.3 Model Selection
Since there is not huge difference 
in terms of Accuracy and incorrect 
predict ions  between the  4 
combinations we discussed above, we 
need other statistical visualizations to 
show which one is the most eligible for 
the TnSL classification. In this context, 
a box and whisker plot visualizes 
the distribution of Test Accuracy 
scores for each combination. With 
reference to box plot in Figure.6, we 
see that the spread of Test Accuracy 
scores tightens considerably under 
the training of C6 (Xception + Adagrad). 
Although C5 (InceptionV2 + Adagrad) 
exhibits slightly close number of 
misclassifications and Accuracy value 
as C1 (MobileNetV2 + M-SGD), it has 
a large variance in the results.

Figure 6. Box plot of Test Accuracy of C1, C4, 
C5 and C6

Figure 7. Differences in Test Accuracy between 
C1, C4, C5 and C6 across the Epochs

Figure 8. Train/Validation Accuracy & Train/
Validation Loss Curves of Xception.

The InceptionV3 model presents a high 
rate of perturbations and instability in 
recognizing new data from the Test 
set, so it cannot learn the problem 
reasonably well. C6 generates lower 
spread range than C1 and C4, despite 
some irrelevant outliers in its vertical 
line. These latter are not numerous 
to be taken into consideration in the 
evaluation process. Also, in Figure.7, 
the bar chart which displays the 
Test Accuracy of each Combination 
at different Epoch values (3, 10, 15, 
35, 40) demonstrates that C6 stays 
ahead of the remaining Combinations 
(C1, C4 and C5) at every iteration 
of training. Hence, the generated 
simulations displayed in Figure.6 
and Figure.7 prove that the Xception 
model performs better than the other 
models when being combined with the 
Adagrad optimizer as it obtains the 
best Accuracy rate of about 98.29 %.
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Run N ° 1 2 3 4 5 6

Accuracy (%) 98.295   98.281 98.287 98.291 98.304 98.286

Table 2. The six running steps to measure the 
performance of C6 (Xception + Adagrad)
for classification of TnSL Signs.

To prove this value does not come 
from the effect of random weights, we 
repeat the training process six times 
and gather the related measures 
of each running step in Table.2. 
Obviously, we notice some short of 
convergence in the obtained values, 
which demonstrates the stability of the 
combination C6 during the prediction 
process. Meanwhile, Figure.8 in which 
are depicted both Accuracy and Loss 
curves related to Train and Validation 
sets proves the efficiency of such 
model (Xception + Adagrad).

However, this model has difficulties 
interpreting the Sign "Election" 
according to the Confusion Matrix 
in Figure.4(f). The class "Election" 
is confused with the classes 
"Municipality" and "Government". 
This could the result of online data 
augmentation techniques applied 
during the training process, leading 
to the similarities in the abstract 
representations and features learnt 
by the CNN network.

5. Conclusion 

This study demonstrates the potential 
of using Transfer Learning for TnSL 
recognition. Our method is applied 
to Tunisian Sign Language (TnSL) 
Dataset of 2000 images, equipped 
with data augmentation technique. 
The Xception model yields the best 
Test Accuracy value of 98.29 % 
when combined with the Adagrad 
optimizer for the recognition of Static 
Two-handed Asymmetrical Signs 
under the small-sized Dataset. This 
research is the fundamental step 
toward developing the Tunisian Sign 
Language TnSL recognition system 
that can serve the Tunisian deaf 
community in day-to day situations 
and alleviate the communication 
barrier.

Future work will focus on expanding 
the Dataset and developing systems 
for dynamic sign recognition. The 
Dataset needs to be further expanded 
to include more TnSL signs and 
allow dynamic interpretations of 
sentences.

References
1.	 Othman, A., Dhouib, A., Chalghoumi, H., Elghoul, 

O., and Al-Mutawaa, A. (2024). The acceptance 
of culturally adapted signing avatars among 
deaf and hard-of-hearing individuals. IEEE 
Access.

2.	 Rastgoo, R., Kiani, K., and Escalera, S. (2021). 
Sign language recognition: A deep survey. 
Expert Systems with Applications, 164:113794.

3.	 Töngi, R. (2021). Application of transfer 
learning to sign language recognition using an 
inflated 3d deep convolutional neural network. 
arXiv preprint arXiv:2103.05111.

4.	 Schmalz, V. J. (2022). Real-time Italian sign 
language recognition with deep learning. In 
CEUR Workshop Proceedings.

5.	 Nefaa, A. (2023). Genetic relatedness of 
Tunisian sign language and french sign 
language. Frontiers in Communication.

6.	 Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, 
Z., and Azim, M. A. (2022). Transfer learning: a 
friendly introduction. Journal of Big Data.

7.	 Chavan, A., Bane, J., Chokshi, V., and 
Ambawade, D. (2022). Indian sign language 
recognition using Mobilenet. In 2022 IEEE 
Conference on Interdisciplinary Approaches 
in Technology and Management for Social 
Innovation (IATMSI).

8.	 Zakariah, M., Alotaibi, Y. A., Koundal, D., Guo, 
Y., and Mamun Elahi, M. (2022). Sign language 
recognition for arabic alphabets using transfer 
learning technique. Computational Intelligence 
and Neuroscience, 2022(1):4567989.

9.	 Buckley, N., Sherrett, L., and Secco, E. L. (2021). 
A CNN sign language recognition system with 
single & double-handed gestures. In 2021 
IEEE 45th Annual Computers, Software, and 
Applications Conference (COMPSAC), pages 
1250–1253. IEEE.

10.	Hossen, M., Govindaiah, A., Sultana, S., and 
Bhuiyan, A. (2018). Bengali sign language 
recognition using deep convolutional neural 
network. In 2018 joint 7th international 
conference on informatics, electronics & vision 
(iciev) and 2018 2nd international conference 
on imaging, vision & pattern recognition 
(icIVPR).

11.	Das, P., Ahmed, T., and Ali, M. F. (2020). Static 
hand gesture recognition for American sign 
language using deep convolutional neural 
network. In 2020 IEEE region 10 symposium 
(TENSYMP), pages 1762–1765. IEEE.

12.	Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., 
and Fei-Fei, L. (2009). Imagenet: A large-scale 
hierarchical image database. In 2009 IEEE 
conference on computer vision and pattern 
recognition, pages 248–255. 

13.	Plested, J. and Gedeon, T. (2022). Deep transfer 
learning for image classification: a survey. 
arXiv preprint arXiv:2205.09904.



Nafath
Issue 27

34

Nafath
Issue 27

35

Automatic Gesture-Based Arabic Sign Language  Recognition:  
A Federated Learning Approach 

Nafath
Issue 27

34

Nafath
Issue 27

35

Automatic Gesture-Based Arabic 
Sign Language  Recognition:  
A Federated Learning Approach 

Ahmad Alzu’bi
agalzubi@just.edu.jo
Department of Computer Science, 
Jordan University of Science and 
Technology, Irbid, Jordan

Tawfik Al-Hadhrami
tawfik.al-hadhrami@ntu.ac.uk
School of Science and Technology, 
Nottingham Trent University, 
Nottingham, UK

Amjad Albashayreh
amalbashayreh20@cit.just.edu.jo
Department of Computer Science, 
Jordan University of Science and 
Technology, Irbid, Jordan

Lojin Bani Younis
lhbaniyounis19@cit.just.edu.jo
Department of Computer Science, 
Jordan University of Science and 
Technology, Irbid, Jordan

Abstract - Featuring machine learning algorithms 
for recognizing hand gesture patterns adjusted 
for individuals with disabilities is an expanding 
trend in assisted living. This paper addresses 
the challenge of interpreting the semantics of 
image-based hand gestures by introducing a 
federated deep learning architecture for Arabic 
sign language recognition. The proposed model 
manages distributed learning through a client-
server paradigm, wherein several edge nodes 
collaborate to jointly learn the discriminative 
features of confidential data without breaching its 
privacy. This model will enable more accessibility 
for people with deafness or impairment using 
image gestures. The federated learning procedure 
is primarily based on the ResNet32 deep backbone 
and federated averaging mechanism. The 
experimental results show the effectiveness of 
the proposed FL model, achieving an accuracy 
of 98.30% with 33 seconds on average for each 
client in a single training round. This demonstrates 
its high capabilities in recognizing Arabic sign 
language and improving the communication 
experience for people with disabilities. 

Keywords 
Arabic sign language; Federated deep 
learning; Image recognition; Accessibility; 
Communication disabilities.

1.Introduction
Since sign language serves as the main 
method of communication for millions 
globally, there’s considerable enthusiasm 
surrounding the potential uses of advanced 
Sign Language Recognition (SLR) tools 
(Semreen, 2023) (Al-Qurishi et al., 2021). 
Given the diverse array of opportunities, 
these assistive technologies could extend 
beyond mere translation. They could enable 
accessible sign language broadcasts, 
promote the creation of responsive devices 
capable of seamlessly interpreting sign 
language commands, and even spearhead 
the development of intricate systems 
tailored to aid individuals with impairments 
in accomplishing daily tasks with greater 
autonomy (Othman et al., 2024).

People with disabilities, such as those who 
are deaf or hard of hearing, utilize Sign 
Language (SL), a visual communication 
method that uses gestures, facial 
expressions, and body movements. 
Leveraging deep neural network 
architectures, deep learning algorithms 
analyze vast amounts of data to learn 
intricate patterns and features inherent in 
hand movements (Rastgoo et al., 2021) (Cui 
et al., 2019). However, there are several 
issues with image-based SLR systems, 
particularly concerning the intricacies of 
feature learning and image processing, 
the confidentiality of private information, 
and the effectiveness of SLR systems in 
practical settings. As a result, it is still 



very important to maintain the speed, 
accuracy, and reliability of interpretation 
algorithms (Elsheikh, 2023) (Cheok et al., 
2019).

Federated Learning (FL) is an emerging 
machine learning paradigm associated 
with decentralized methods, proving to 
be an effective approach for training 
shared global models (Wen et al., 2023). 
FL methods entail coordinating the training 
of a central model from a collection of 
participating devices. When training data 
is sourced from user interactions with 
mobile applications, for instance, one 
significant application scenario for FL 
arises (Lee et al., 2024).  In this context, 
FL enables mobile phones to collectively 
learn a shared prediction model while 
retaining all training data on the device, 
effectively performing computations 
on their local data to update a global 
model. This approach goes beyond the 
use of local models for mobile device 
predictions by bringing model training 
to the device level. Within the context of 
SLR, this approach provides a promising 
solution to the challenges of privacy 
preservation, data diversity, and model 
adaptability (Krishnan and Manickam, 
2024) (You et al., 2023).

Arabic sign language (ArSL) encompasses 
a rich vocabulary and intricate structures. 
Much like other languages, it involves the 
combination of hand shapes, orientations, 
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motion, and facial expressions to convey 
various meanings (Zakariah et al., 2022). 
While various deep learning algorithms 
have been applied to recognize Arabic 
sign language (Aldhahri et al., 2023) 
(Saleh and Issa et al., 2020) (Ahmed et 
al., 2021) (Kamruzzaman et al., 2020) 
(Alawwad et al., 2021), prior studies did not 
employ federated learning architectures. 
This motivated us to address this gap by 
utilizing and investigating a federated 
deep learning model to recognize the 
Arabic sign language, ensuring privacy 
for individuals with disabilities and 
providing high performance with low time 
complexity. This allows model training to 
take place locally on the local devices of 
users or decentralized servers, protecting 
the privacy of confidential information. 
Therefore, this approach enables more 
accurate and robust recognition of 
gestures across diverse environments 
and conditions

The rest of this article is organized as 
follows: Section 2 presents the procedure 
of image preprocessing; the proposed 
architecture of the FL-based model is 
introduced in Section 3; Section 4 presents 
the experimental results; Section 4 
discusses model applicability, scalability, 
and ethical issues; and Section 5 concludes 
this study.

2. ARASL Images Preparation
The benchmarking dataset utilized in this study is the Arabic 
Alphabet Sign Language (ARASL) dataset (Latif et al., 2019), which 
consists of 54,049 images depicting hand gestures representing 
the Arabic alphabet. This dataset is specifically designed to 
assist the deaf community in understanding the language and 
expressing their thoughts and emotions freely. Comprising 32 
classes corresponding to Arabic letters, each class contains 
a specific number of images. Figure 1 displays a selection of 
sample ARASL hand-gesture images. 

A transformation procedure was applied to ARASL data consisting 
of image resizing, tensor conversion, and [0,1] normalization. 
Finally, the image collection is divided into 70% for training, 
10% for validation, and 20% for testing. Multiple subsets of the 
training and testing images are created, which is necessary for 
simulating different decentralized clients in a FL framework.

Figure 1. Sample images of Arabic signs from ARASL dataset.
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3. Method
Figure 2 illustrates the general framework of the proposed 
federated learning architecture, which includes a central server 
interacting with multiple clients functioning as distributed 
computing nodes. The server hosts a global deep learning model 
designed to be trained on the local data of the clients. On the 
client side, each client holds a subset of Arabic hand-gesture 
images containing labeled samples. To maintain privacy, clients 
do not share their local ASL images with the server or other 
clients. The server initially broadcasts the global model to all 
participating clients, utilizing data from each client collaboratively. 
This process aims to identify the optimal model weights that 
minimize the classification loss rate for each client. Over several 
training rounds, the server aggregates the training results, which 
represent the gradients of the local model parameters, updates 
the global model, and then sends it back to the clients.

Figure 2. The pipeline of the federated learning process for 
Arabic sign recognition.

In this study, the Federated Averaging (FedAvg) (McMahan et al., 
2017) is used for data aggregation with a network of five clients, 
utilizing Distributed Stochastic Gradient Descent (D-SGD). The 
training process involves 10 local epochs and 10 global rounds 
with iterative model updates. This approach synchronizes the 
local contributions of each client, leading to enhanced global 
hand-gesture image classification. The server continuously 
updates the global model after each round and redistributes 
these updates to the local models on the client side.

ResNet32 (He et al., 2016), a well-recognized deep neural 
network architecture, has been incorporated into our federated 
framework to facilitate the training and evaluation processes 
across a network of participating client devices. This approach 
enables efficient transfer learning from a general domain to the 
specific ArSL domain.

4. Experimental Results

4.1. Experiments Setup
To determine the optimal hyperparameters for evaluating the 
FL model’s performance, several experiments are carried out. In 
every experiment, five clients perform ten epochs of training on 
local data. Gradients are aggregated using FedAvg on the server 
side, and the architecture is configured with categorical cross-
entropy loss function, SoftMax function for image classification, 
SGD optimizer, and a learning rate of 0.01. The classification 
accuracy of ArSL image recognition is calculated. The true and 
false measurements (TP, TN, FP, and FN) are used to compute 
standard evaluation metrics such as accuracy, precision, recall, 
and F1-score. High accuracy reflects the model's effectiveness 
in correctly identifying various hand movements and reducing 
classification errors. 

4.2. ASL Recognition Results
Figure 3 presents the macro-average results of the proposed FL-
ResNet32 model over ten rounds. The FL-ResNet32 demonstrates 
consistently high performance in both testing and validation, 
achieving a test accuracy of 98.3%, precision of 98.28%, recall 
of 98.26%, and an F1-score of 98.27%. Accuracy and macro-
average metrics are employed to assess the model's performance, 
particularly because the Arabic sign language dataset is imbalanced. 
Macro-averaging treats all classes equally without favoring the 
dominant class.
In terms of training time, FL-ResNet32 effectively recognizes 
Arabic sign language with an accuracy of 98.3% in an average of 
33 seconds over 10 epochs. Additionally, the entire model training 
across 10 rounds with 5 distributed clients (edge nodes) takes 
approximately 28 minutes on average.

Figure 3. Macro Average accuracy achieved by the FL-ResNet32 on ArSL images.
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Table 1 provides a performance comparison between our proposed 
federated deep learning model and existing ArSL recognition 
approaches evaluated on the ArASL2018 dataset. The table 
highlights key features and performance results documented 
during testing. As shown, FL-ResNet32 outperforms the other 
methods and recognizes ASL images more accurately, achieving 
an accuracy of 98.3% in an average of 33 seconds over 10 epochs.

Table 1. Comparison of macro average accuracy on ArASL2018 
with related works.

Research Ref. Method Test  
Accuracy (%)

Epochs

Kamruzzaman et 
al. (2020)

CNN 90.0 100

Aldhahri et al. 
(2023)

MobileNet 94.5 15

Zakariah et al. 
(2022)

EfficientNet-B4 95.0 30

This Work FL-ResNet32 98.3 10

5. Discussion
This study emphasizes how crucial it is to have federated 
computing environments to enable the utilization of diverse 
information that can be gathered from various kinds of computing 
edges, or client devices. This information is extremely sensitive 
and confidential since it pertains to individuals with disabilities. 
Conventional machine-learning techniques frequently entail 
compiling data on a single workstation or server. But because 
human communication is so sensitive, privacy concerns must be 
addressed, especially in Internet of Things (IoT) setups.

However, transferring these data requires a network conne
ction with sufficient bandwidth for large datasets and low latency 
to ensure timely predictions (Diaz et al., 2023). Additionally, 
network communication dependency requires sophisticated 
encryption techniques to ensure privacy and security of sensitive 
information. Techniques like data compression can be also 
employed to enhance communication efficiency and increase 
scalability of FL-based ASL recognition systems. 

To facilitate interaction between the deaf community and society, 
creating a sign language interpreter able to convert sign language 
into text or spoken language is crucial. This interpreter can be 
created through computer vision focused approaches enabled in 
mobile devices (Talov, 2022). To develop a practical and effective 
system for sign language interpretation, further research in 
this area is still needed. Recent vision-centric research and 
systems (Othman et al., 2024) (Othman and El Ghoul, 2022) 
(Bennbaia, 2022) shifted toward developing culturally adapted 
signing avatar technologies. This enables individuals with deaf 
and hard of hearing to engage with community life, leading to 
the emergence of more dynamic and adaptable communication 
approaches.

Virtual human avatars, also known as signing avatars or sign 
language avatars, are a type of conversational technology that 
uses a 3-D representation of a person to produce text in any 
sign language or international sign. The use of sign language 
avatars is one cutting-edge interactive solution to the problem 
of sign language content access. This avatar-based technology 
will leverage federated learning, as the communication model in 
FL-based systems aligns well with a server-client environment, 
involving various interactive client devices that can provide the 
server with additional training data in multiple formats, such as 
text and audio. Further research is necessary to investigate the 
feasibility of avatar-based intelligent solutions for sign language 
recognition and translation within large-scale decentralized 
networks. This advanced technology could greatly enhance 
communication in future smart cities.
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6. Conclusion
This study presents a federated deep learning approach to recognize and classify Arabic sign 
language using hand-gesture images. The proposed architecture stands out as a successful 
strategy for attaining high accuracy while keeping the critical practice of protecting patient data 
privacy, something that existing ArSLR approaches lack. This collaborative distributed learning 
approach allows for efficient model training on remote devices. The future investigation seeks 
to enhance the user experience of Arabic sign language recognition through an interactive user 
interface on mobile phones. This could facilitate contextual learning of sign expressions for 
individuals with communication disabilities.
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Abstract - Sign language is a primary channel for 
the deaf and hard-hearing to communicate. Sign 
language consists of many signs with different 
variations in hand shapes, motion patterns, and 
positioning of hands, faces, and body parts. 
This makes sign language recognition (SLR) a 
challenging field in computer vision research. 
This paper tackles the problem of few-shot SLR, 
where models trained on known sign classes are 
utilized to recognize instances of unseen signs 
with only a few examples. In this approach, a 
transformer encoder is employed to learn the 
spatial and temporal features of sign gestures, 
and an embedding propagation technique is used 
to project these features into the embedding 
space. Subsequently, a label propagation method 
is applied to smooth the resulting embeddings. 
The obtained results demonstrate that combining 
embedding propagation with label propagation 
enhances the performance of the SLR system and 
achieved an accuracy of 76.6%, which surpasses 
the traditional few-shot prototypical network’s 
accuracy of 72.4%.

Keywords 
Sign language recognition; Sign language 
translation; Few-shot learning.

1 Introduction
Sign language represents the main channel 
for deaf or vocal impairment people to 
com- municate, exchange knowledge and 
express their feelings with others, and 
build social relationships (1). As technology 
advances, people with hearing impairments 
and deafness can communicate with their 
community more efficiently by translating 
sign language into natural languages and 
vice versa (2).

sign language recognition (SLR) is one of 
the most widespread critical problems 
addressed in computer vision (3). Despite 
most signs have clearly defined looks, they 
are slightly different from one another 
visually (4; 5). As a result, for SLR to be 
a comprehensive technique, it requires 
fundamental advancements in modeling 
and identifying fine-grained spatiotemporal 
patterns of hand movements (3). There 
are also other factors that affect the 
performance of the recognition task, 
including variations in the visibility 
perspective (6), the development of sign 
languages over time (7), and regional 
differences in sign language (8).
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SLR technique can be categorized into 
isolated and continuous SLR. Isolated SLR 
sys- tems target word-level signs, whereas 
continuous SLR approaches recognize sign 
language sentences (9). Isolated SLR has 
been studied extensively in the literature 
Compared to  continuous SLR (2). One main 
issue with these approaches is the need for 
a large num- ber of annotated samples per 
sign (10) (11) (12). Annotated samples of all 
signs in all languages of interest must be 
collected to satisfy this dependency. These 
samples must include signs expressed 
multiple times by multiple individuals per 
sign under different recording settings. 
Globally, more than 140 sign languages 
are spoken along with several dialects (13). 
Consequently, scaling up SLR is hindered 
by the demand for supervised examples. 
Recently, a few solutions have attempted 
to overcome this problem using few shot 
learning to recognize unseen signs with 
few annotated samples (14; 15; 16; 3). 
Few-shot learning is a technique to learn 
class discrimination from a limited number 
of labeled samples.
In this paper, we introduce a few-
shot learning approach for SLR that is 
specifically de- signed to generalize well 
to unseen classes. Our approach accepts 
pose information of sign gestures and feeds 
them into a transformer encoder to extract 

a set of features encoding spatial and 
temporal information. We then transform 
these features from the features space 
to the embedding space by leveraging 
embedding propagation with label 
propa- gation techniques. The proposed 
approach has been evaluated using the 
WLASL-100 dataset and the obtained 
results demonstrate the effectiveness of 
combining embedding propagation with 
label propagation for few-shot learning 
for SLR.

This paper is arranged as follows. 
Section 2 begins with a review of the 
relevant literature. Then in Section 3, we 
present the few-shot SLR method, and 
the experimental work is presented in 
Section 4. Our conclusion and future work 
are presented in Section 5.

2 Related work
Sign language recognition (SLR). Several 
techniques have been developed in the last 
two decades to recognize sign language 
gestures(1; 2). The majority of these 
tech- niques focus mainly on tracking 
and recognizing signer’s hands (17; 18; 
19; 20). Hands motion represents the 
manual part of the sign language, whereas 
body movements and facial expressions 
represent the non-manual part of the sign 
language.  Few studies in the literature that 
tried to simultaneously recognize manual 
and non-manual signs (21; 22; 23).

There have been several attempts to 
develop SLR approaches based on deep 
learning in recent years. Camgoz et al. 
(24) proposed a transformer-based model 
for Continuous SLR and translation. The 
temporal information of the sentence’s 
signs is learned in a unified way using 
a Connectionist Temporal Classification 
(CTC) loss. A previous study (25) proposed 
a progressive transformer to translate 
discrete speech sentences into continued 
3D expression sequences. In this work 
(26), Tao et al. (26) employed a multi-view
 augmentation of American sign alphabets 
to address incomplete occlusions and 
reduce the impact of perspective changes. 
The resulting augmented images are 
then fed into a simple convolution neural 
network (CNN). In another study (27), a CNN 

was used to combine several spatial and 
spectral constructions of images of hand 
gestures to create a method for the visual 
detection of fingerspelling in gestures. The 
proposed method creates spatiotemporal 
images of hand sign motions in Gabor 
spectral formats and then utilizes an 
improved CNN to categorize the gestures 
in the joint space into appropriate classes.
SAMSLR, a multi-modal skeleton-aware 
SLR framework, was proposed as a way to 
ex- ploit multi-modal information for SLR 
(28). Huang et al. used a 3D-CNN to learn 
spatial-temporal aspects of sign gestures 
(29). A set of features were extracted 
from the signer’s hands to highlight the 
significant changes in hand motions. A 
dataset consisting of 25 signs was used 
to evaluate the proposed approach and an 
accuracy of 94.2% was reported. Another 
system was developed for recognizing 
sign language alphabets and an accuracy 
of 98.9% was reported (29).
		
Using motion history images produced from 
color frames, authors in (30) proposed a 
model for isolated SLR. This technique was 
used to summarize the spatiotemporal 
in- formation of each sign. A model that 
accepts RGB and motion history images 



was implemented as a movement-based spatial attention 
module combined with the 3D ar- chitecture. Using a 
late fusion technique, the model features are directly 
applied to the features of the 3D model. Albanie et al. 
(31) attempted to deal with the lack of anno- tated sign 
language data by detecting keywords in processed 
TV broadcasts. In 1,000 hours of video, 1000 signs 
are automatically localized through weakly aligned 
subtitles and keyword spotting. Authors in (32) offered 
an integrated framework for multiple instance learning 
in ongoing sign language movies.

Few-shot SLR In contrast to traditional supervised-based 
SLR, few-shot learning- based approaches recognize 
unexplored sign classes with either very few training 
samples (few-shot SLR) or no visual training samples 
(zero-shot SLR). Cornerstone Network (CN) is a few-shot 
learning model proposed by (14) that can mitigate the 
impact of support samples in unsuitable conditions. In 
this network, the mean with the bias of support samples 
are extracted from the input samples and used as an 
input features. Then, neural networks with clustering 
algorithms were used to learn the mapping from input 
space to the embedding space. As with the Siamese 
networks, the feature extraction network was trained 
in the same manner so that the features from the 
heterogeneous data are distributed as widely as possible. 
Similarly, Shovkoplias et al. (15) investigated several 
few-shot learning methods, such as Model-Agnostic, 
Meta-Learning, Matching Networks, and Prototypical 
networks, to classify electromyogram recordings of deaf 
and dumb gestures. Authors in (16) employed a pre-
trained key-point predictor to keep only the information 
related to the body, hand, and face and discard other 
areas. This allows better comparison between vector 
embeddings as rich representations are learned from 
body key point sequences. Using k-nearest neighbors, 
cosine similarity, and Prototypical networks, the new 
input vector is classified by comparing its distance to a 
few examples of each class.

Bilge et al. (3) applied zero-shot learning to class sign 
language gestures without any annotated samples. 
In their work, semantic class representations are 
constructed from readily available textual sign 
descriptions derived from sign language dictionaries. 
These representations are used to map signs during 
the inference to their corresponding classes. Similarly, 
a zero-shot learning framework is used to develop 
spatiotemporal models of body and hand regions with 
the use of semantic class representations (33). RGB 
and depth modalities were used in this study. The 
approach includes two vision transformer models that 
identify body parts and segment them into 9 parts. 
Then, a set of visual features are extracted by the 
second transformer.

3 Methodology

Figure 1: The proposed framework. Embedding and 
label propagations representations are taken from (34).

In this section, we present an overview of our proposed 
pipeline, illustrated in Figure 1. The pipeline’s architecture 
integrates the transformer encoder (35) with embedding 
propagation (34). Initially, the transformer encoder 
model extracts features from each sign gesture. These 
features are subsequently mapped to embeddings 
via the embedding propagation component. We then 
evaluate two approaches for embedding smoothing, 
label propagation and prototypical network. Finally, 
the refined embeddings are input into a classifier to 
categorize each sign into its corresponding label.
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3.1 Transformer Model
A transformer-based model proposed by (35) is used in 
our pipeline as a feature extractor to learn body pose 
representations. The features are extracted using the 
transformer’s encoder, while the decoder is replaced by 
the embedding propagation component. Each video frame 
undergoes standard pose estimation preprocessing, 
identifying head, body, and hand landmarks. To prevent 
model overfitting and enhance its generalization, the 
skeletal data is augmented during training, inspired 
by the techniques proposed in (35). Specifically, every 
joint coordinate in each frame is randomly rotated up 
to 13 degree angle. These joint coordinates are then 
transformed into a new plane, giving the video a tilted 
appearance. Subsequently, the landmark is rotated 
relative to the current land- mark as it passes through 
the keypoints of both hands. Following this, irrelevant 
spatial features are largely removed by normalizing 
the signer’s body proportions, camera dis- tance, and 
frame location, resulting in a vector of normalized body 
poses as input to the model. Each frame’s pose vector 
consists of 54 joint locations, which are then en- coded 
with positional information. The learned encoding is 
used with a dimension of 108 and is added elementwise 
to the pose vector. The input sequence is fed into the 
transformer’s encoder layers, passing through a self-
attention module and a two-layer feedforward network. 
The self-attention module comprises nine heads and six 
encoder layers.

3.2 Embedding Propagation
Embedding propagation is a technique to map features 
into a set of interpolated features called embeddings. In 
this work, we used the embedding propagation technique 
proposed in (34). This technique takes the extracted 
input features using the transformer encoder into the 
episodic data. Then, it produces a set of embeddings z˜i 
in two steps. First, for every pair of features (i, j ), the 
distance is calculated as d2

ij = zi − zj
2

2 and the adjacency
matrix as Aij = exp(−d2

ij
 /O2) where O2 is a factor for 

scaling and Aii = 0 for all i . Then, a Laplacian of the 
adjacency matrix is computed as follows:

L = D−1/2 * AD−1/2, Dii = ∑_j A_ij 				    (1)

Then, the propagator matrix is obtained as follows,

P = (I − α L)−1						      (2)

where I is an identify matrix and α ϵ R is a factor for 
scaling, and the final embeddings
are computed as follows,

z_i = ∑_j P_ij Z_j						      (3)
 
Embedding propagation removes unwanted noise from 
the feature vectors since the (Zi) are now a weighted 
sum of their neighbors.

To perform manifold smoothing on the resulting 
embedding, we evaluated label propaga- tion and 
prototypical network (36) techniques. The model 
optimization and classification are performed on the 
output of the smoothing technique.
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4. Experimental work
Dataset. We utilized the Word-Level 
American Sign Language (WLASL) dataset 
to train and evaluate our proposed approach 
(37). WLASL is a dataset of American Sign 
Language comprising 100 distinct sign 
gestures, each performed by multiple 
signers, with more than three signers 
executing each sign. The dataset includes 
pose information for all the signs. In our 
work, we divided the data into three sets: a 
base set with 90 gestures, a validation set 
with 5 gestures, and a novel class set with 
5 gestures. The base and validation sets 
were used during the pretraining phase, 
while the novel set was used during the 
inference phase. During inference, we 
divided the novel set into support and 
query sets.

Experiments Setup. The models are 
optimized using an SGD optimizer during 
the training phase with a learning rate of 
0.0001 selected empirically. Every time 
the model reaches a plateau, which occurs 
when the validation loss has not decreased 
for 10 epochs, we reduce the learning rate 
by a factor of 10.

Table 1: Recognition accuracies of the 
proposed system with different number 
of samples in the support set. The highest 
accuracy is bolded and the second highest 
score is underlined.

Results and discussion. We evaluated the 
proposed model using various configu- 
rations by varying the number of samples 
in the support set. The results, presented 
in Table 1, demonstrate the impact of 
embedding propagation on the model’s 
perfor- mance in SLR with limited samples. 
We evaluated system components with and 
without embedding propagation to highlight 
their effectiveness. As indicated in the table, 
an accuracy of 76.6% was achieved using 
the label propagation method combined 
with embedding propagation, compared 
to the same settings without embedding 
propagation. The second-highest accuracy, 
76.0%, was obtained with prototypical 
networks with embedding propagation, 
marking an improvement of approximately 
11% over the same settings without 
embedding propagation

It is also evident that both smoothing 
techniques, label propagation and 
prototypical net- works, performed 
effectively with the transformer model 
using a small number of samples in the 
support set. Although increasing the 
number of samples generally enhanced 
the performance of all techniques, some 
models exhibited overfitting, which may 
explain the performance decline when 
10 samples were used in the support set.

5. Conclusions
In this paper, we proposed a few-shot 
learning method for SLR designed to 
generalize effectively to unseen classes. 
Our approach maps features in the 
input space to embed- ding space using 
embedding propagation combined with 
label propagation techniques. Initially, sign 
gesture features are extracted from the 
input frames using a transformer encoder. 
These features are then mapped to the 
embedding space through an embed- ding 
propagation method, followed by label 
propagation to smooth these embeddings. 
We evaluated the proposed method using 
the WLASL-100 dataset, and the experimen- 
tal results demonstrate the superiority 
of combining embedding propagation 
with label propagation compared to the 
prototypical network. For future work, we 
plan to evalu- ate our approach on different 
sign language datasets to further assess 
its generalization capabilities.
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Support set size
Without Embedding Propagation With Embedding Propagation
Label  
Propagation

Prototypical  
Networks

Label  
Propagation

Prototypical  
Networks

1 72.2 67.2 70.8 68.6
5 72.4 73.4 76.6 72.2

10 69.8 65.4 68.8 76.0
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Translate Arabic Text to Arabic Gloss for Sign Language

Abstract - Arabic Sign Language (ArSL) is a 
language used by the deaf community across 
Arab countries, but the lack of familiarity with 
ArSL among the hearing population often leads to 
social isolation for deaf individuals. The structural 
differences between ArSL and spoken Arabic pose 
significant challenges for machine translation. 
In this study, we enhance Arabic to ArSL gloss 
translation by employing data augmentation 
techniques, expanding the dataset from 600 to 
over 23,328 samples using sequence-to-sequence 
transformer models. Our approach achieved a 
substantial performance improvement, increasing 
the BLEU score from 11.1% in the baseline model 
to 52.72% on original test set.  The best model 
achieved a BLEU score of  85.17% on augmented 
data test, underscoring the effectiveness of data 
augmentation in enhancing ArSL translation 
quality.

Keywords- Arabic Sign Language (ArSL); Gloss 
Text; Data Augmentation; Machine Translation; 
Sequence-to- Sequence Model; BLEU Score.

1. Introduction
The global deaf and hearing-impaired community, 
which constitutes over 5% of the world’s population, 
relies heavily on sign languages for communication 
[1]. Sign languages are rich, visual-spatial 
languages that employ a combination of hand 
gestures, facial expressions, and body movements 
to convey meaning [2]. ArSL, in particular, serves 
as the primary mode of communication for the 
deaf community in Arab countries [3].   Despite its 
importance, ArSL remains largely unfamiliar to 
the hearing population, contributing to the social 
isolation of deaf individuals. Unlike spoken Arabic, 
ArSL has its own distinct syntax, grammar, and 
lexicon, making translation between these two 
languages a complex challenge. 

The development of a semantic rule-based 
machine translation system for converting 
Arabic text to ArSL gloss, as demonstrated by 
[4], has laid an important foundation. However, 
these approaches have been constrained by 
the availability of training data and the inherent 
limitations of rule-based methodologies. The work 
was based on a relatively small parallel corpus 
of 600 Arabic sentences translated into ArSL 
gloss. While useful, this dataset is insufficient to 
capture the full variability of natural language. 
The rule-based system achieved BLEU score of 
35%, highlighting the challenges in preserving 
the intended meaning and grammatical structure 
in translations. These limitations restrict the 
scalability and adaptability of the translation 
models, resulting in low accurate translations.
The effectiveness of machine translation systems, 
particularly those designed for various language 
pairs such as Arabic language and ArSL, is heavily 
dependent on the availability of large, high-quality 
datasets. A more extensive dataset would allow 
for better training and generalization, leading to 
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more accurate translations [5]. Furthermore, 
advancements in Natural Language Processing 
(NLP) and machine learning techniques, such as 
sequence-to-sequence models, have demonstrated 
significant potential in improving translation 
accuracy by learning complex language patterns 
and relationships directly from data [6].

To address these limitations, our research aims 
to fill this gap by utilizing data augmentation 
techniques such as Blank Replacement, Synonym 
Replacement, and Sentence Paraphrasing to 
expand the original dataset from 600 to over 
23,328 sentences. In addition, we evaluate the 
generated data by using the advanced Arabic 
sequence-to- sequence machine translation 
models and apply different data proportion 
techniques to examining the impact of dataset 
size on model performance. This approach makes 
the data more robust basis for training, capturing 
a wider range of linguistic diversity. 

The contribution of this work is twofold: (1) We 
explore different data augmentation techniques 
to enhance the dataset size and quality of ArSL 
translation. (2) We investigate and compare 
different sequence-to-sequence machine 
translation models, by testing their performance 
on both the original test data and augmented 
test data. 

2. Related Work 
Translating Arabic text into ArSL is essential for 
integrating deaf individuals into their communities. 
However, developing effective translation systems 
faces challenges due to the scarcity of parallel 
corpora and incomplete documentation of ArSL’s 
grammar and structure. ArSL translation research 
is still in its early stages compared to other sign 
languages [7] like American Sign Language (ASL) 

[8] and British Sign Language (BSL) [9]. Many 
existing systems rely on rule-based methods, 
requiring extensive linguistic knowledge to map 
spoken or written text to corresponding sign 
language expressions.

In the context of ArSL, several approaches have 
been explored. [10] focused on translating prayer-
related Arabic sentences into ArSL using Sign 
Writing, limited by a small corpus and lack of 
coverage for various sentence structures. [11] 
used a chunk-based example-based machine 
translation (EBMT) approach, but their reliance 
on Google Tashkeel and example similarity led 
to high error rates. [12] developed a rule-based 
system that achieved high accuracy at the word 
level but did not adequately address sentence-
level grammatical differences. [13] explored 
syntax transformations but were limited to 
specific grammatical structures.

Recent advancements have incorporated data-
driven techniques, such as statistical ma- chine 
translation (SMT) and example-based machine 
translation (EBMT), which show promise but are 
limited by the availability of large, high-quality 
datasets. [4] developed a rule-based system 
for translating Arabic text into ArSL, utilizing 
a 600-sentence health domain corpus. While 
their system achieved over 80% accuracy, its 
limited dataset size restricted broader language 
applicability and generalization. 

Additionally, efforts have been made to improve 
the availability and annotation of sign language 
data. The Jumla Sign Language Annotation Tool, 
described by [14], provides a web-based solution 
for annotating Qatari Sign Language (QSL) with 
written Arabic text, supporting the creation of 
annotated datasets such as the Jumla Qatari 

Sign Language Corpus. [15] extended this work 
with the development of the JUMLA-QSL-22 
corpus, containing 6,300 records annotated 
with glosses, translation, signer identity, and 
location. These tools and datasets are crucial 
for advancing sign language processing (SLP) 
and highlight the ongoing efforts to establish 
more comprehensive linguistic resources for 
Arabic-related sign languages.

Machine translation (MT) techniques have evolved 
significantly, with neural machine translation 
(NMT) models, such as sequence-to-sequence 
architectures, emerging as state- of-the-art 
methods. These models, including Recurrent 
Neural Networks (RNNs) and Transformer-based 
architectures, have demonstrated a strong ability 
to handle complex language pairs by learning 
from vast amounts of data to capture linguistic 
patterns and context [16]. For sign language 
translation, these models have been applied to 
other sign languages [17] and [18], achieving 
varying degrees of success. The challenge lies 
in effectively applying these models to ArSL, 
where data scarcity and linguistic differences 
pose significant obstacles.  However, utilizing 
augmented datasets in conjunction with NMT 
models can enhance translation accuracy and 
help bridge the gap between spoken Arabic and 
ArSL.

In our previous work [19], we have shown the 
performance of the AraT5-V2 model for Arabic 
gloss machine translation which was evaluated 
using various data augmentation methods, 
including BR, SP, and SR. Experimental results 
shows that the BR method demonstrated superior 
performance, likely due to its larger dataset 
size of 22,404 samples. In contrast, the SP and 
SR methods, which utilized produced smaller 
datasets, exhibited higher validation losses 

and significantly lower BLEU scores. Further 
analysis was conducted by combining all three 
augmentation methods and compare with other 
models, including the original AraT5 Base and 
mT5 models, the AraT5 V2 model outperformed 
with test BLEU score of 90.93.

In this work, we extend the investigation by 
employing data augmentation techniques to 
expand the original dataset to over 23,000 samples 
and testing models on the original test set, while 
we tested the models by the augmented test set 
in our previous study. Moreover, in this study 
we apply data proportion techniques to study 
the impact of dataset size. In all experiment we 
compare the performance of AraT5 base, Arat5 
v2 and mT5 models.

3. Methodology 
In this section, we outline the methodology used 
to enhance the translation from Arabic text to 
gloss text. Our approach focuses on significantly 
expanding the dataset size through various data 
augmentation techniques and implementing 
advanced machine translation models. By 
enriching the dataset and leveraging sequence-
to-sequence models, we aim to address the 
limitations of previous rule-based systems and 
improve translation accuracy and reliability.
Figure 1 shows an example of translation process 
from Arabic spoken language to sign language 
including an intermediate gloss representation, 
which serves as a crucial step in bridging the 
gap between the syntax of spoken Arabic and 
the grammar of ArSL. By translating spoken 
language into gloss text, the translation text to 
accurate sign language representations will be 
more easier for machine translation models.
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Table 1: Illustration of the translation 
process from spoken Arabic to gloss text 
and then to sign language1.

3.1 Data Augmentation Techniques
In order to overcome the limitations of the 
original ArSL dataset, which consisted of only 
600 sentences primarily from healthcare settings, 
we employed data augmentation methods to 
expand the dataset to 23,328 sentences. The 
primary augmentation techniques used include 
BR, SR, and SP. These techniques were selected 
based on their ability to enhance the variability 
and robustness of the training data, which is 
essential for capturing the complex linguistic 
features of Arabic and ArSL.

A crucial component of our methodology is the 
development and use of an indexing algorithm, 
which ensures systematic processing and 
accurate mapping between Arabic text and its 
corresponding ArSL gloss. The indexing algorithm 
assigns indices to each word in both the original 
Arabic sentences and their gloss translations, 
maintaining alignment and consistency throughout 
the data augmentation process. This alignment 
is essential for preserving the semantic meaning 
of sentences when applying augmentation 
techniques, as it ensures that any modifications 
made to the original text are accurately reflected 
in the gloss version. The use of the indexing 
algorithm facilitates seamless integration of new 
data samples, allowing for scalable and efficient 
data augmentation, and setting a foundation for 
creating a high-quality, diverse dataset.

Blank Replacement (BR), is a data augmentation 
methodology used in NLP to simulate missing or 
unknown words and enhance the performance 
of machine learning models. This technique 
involves masking selected words in a sentence 
and predicting those words based on surrounding 
context using the fill mask tool2, and the 
AraELECTRA model [20]. By creating masked 
versions of original sentences and generating 
new candidate words, BR enables enriching the 
dataset with up to 21,804 new samples.

Synonyms Replacement (SR), introduces lexical 
diversity by substituting words with their synonyms 
from a predefined dictionary, thus increasing 
vocabulary variety while maintaining the overall 
meaning of the sentences. This method leverages 
a custom-built dictionary based on the Saudi Sign 
Language dictionary and the ArSL dataset, which 
ensures that synonyms are contextually relevant 
to ArSL. By exposing the model to different 
lexical choices that convey similar meanings, SR 
enhances the model’s ability to generalize across 
various linguistic expressions and improves its 
adaptability to different word usages, resulting 
in the generation of 684 new sentences.

Sentence Paraphrasing (SP), is used to provide 
the training data with some variation and help 
the model learn various ways to deliver the 
same information by creating paraphrased 
versions of sentences through back translation 
(i.e., translating sentences into English and 
then back into Arabic). This process generates 
alternative phrasings that preserve the original 
meaning but differ in structure.   Such variability 
is crucial for handling the significant structural 
differences between Arabic and ArSL. By training 
on paraphrased data, the model becomes more 
flexible in recognizing and accurately translating 
a wide range of sentence structures, thereby 
improving its capacity to capture meaning and 
maintain grammatical consistency in translations. 
SP is resulting in 840 new sentences.

Figure 2 Shows the examples of dataset with 
augmented data that span a wide range of 
vocabulary and sentence structures, providing 
the model with the necessary exposure to capture 
linguistic nuances.

Figure 2. Arabic to Arabic gloss dataset samples.

Employing these data augmentation techniques, 
as detailed in our previous work [19], significantly 
enhances the dataset’s size and diversity. This 
enriched dataset provides a solid foundation for 
training effective machine translation models, 
supporting the development of a robust system 
capable of accurately translating Arabic text 
into Arabic Sign Language gloss and improving 
accessibility and communication for the deaf 
community.

3.2 Sequence-to-Sequence Machine Translation 
Model
Sequence-to-sequence transformer models 
have become a cornerstone in natural language 
processing, particularly for tasks that involve 
transforming input sequences into output 
sequences, such as machine translation. These 
models are designed to handle input and output 
sequences of variable lengths, making them 
appropriate for translating text from one language 

to another while preserving the meaning of 
the samples. The T5 (Text-to- Text Transfer 
Transformer) model is a state-of-the-art Seq2Seq 
model that unifies various NLP tasks under a 
single framework by converting them into text-
to-text tasks [6]. This architecture is particularly 
well-suited for translation tasks due to its ability 
to handle diverse linguistic patterns and context 
effectively.
In our study, we also utilize AraT5-V2, a variant 
of the T5 model training specifically for the 
Arabic language [21].  AraT5-V2 leverages the 
robust architecture of T5, optimized for handling 
the intricacies of Arabic syntax and semantics. 
The model consists of an encoder with multiple 
layers that each have a self-attention mechanism 
and a feed-forward network, followed by a 
decoder that also includes cross-attention to 
the encoder’s output. This structure allows the 
model to generate translations that accurately 
reflect the source language’s meaning and align 
with the target language’s grammatical norms. 
Figure 3 shows the architecture of Arabic gloss 
machine translation using AraT5 Model.

1https://sshi.sa/ 2https://huggingface.co/tasks/fill-mask
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Figure 3. AraT5 Model architecture from gloss 
machine translation.

As shown in Figure 3, the process of training 
AraT5-V2 for translating Arabic text into Arabic 
Gloss Language involves a sequence of carefully 
structured steps to optimize the model’s 
performance. Initially, the pre-trained AraT5-V2 
model, which already understands general 
Arabic language structures, is further training 
on a parallel dataset of Arabic sentences and 
their corresponding Arabic gloss translations. 
During training, the encoder processes the 
input, converting it into a series of contextual 
representations that capture the sentence’s 
meaning. These representations are then passed 
to the decoder, which generates the gloss output in 
an autoregressive manner—predicting one token 
at a time while using previously generated tokens 
to inform the prediction of the next. The model’s 
parameters are adjusted using backpropagation, 
where the differences between the predicted 
gloss sentences and the actual gloss sentences 
are minimized using optimization algorithms 

like AdamW. Hyperparameters, 
including learning rate and 
batch size, are training to 
achieve optimal performance, 
and techniques such as early 
stopping are employed to 
prevent overfitting. Once the 
model demonstrates satisfactory 
performance on a validation set, 
it is considered ready for testing.
Training AraT5-V2 model is 
capable of taking an Arabic 
sentence as input and generating 
its corresponding Arabic gloss 
translation. The encoder-decoder 
architecture ensures that the 
generated output maintains 
the semantic meaning and 
follows the syntactic rules of 
the gloss language, reflecting 

the knowledge gained during training. The 
performance of the model is evaluated using 
metrics such as BLEU scores, which measure 
the accuracy of the translated sentences against 
human-annotated references.

4. Experimental Results 
We employed the AraT5 V22 model for our 
experiments, a state-of-the-art neural machine 
translation model tailored for Arabic text. 
Additionally, we evaluated two other models; mT5 
[22], a multilingual transformer model capable of 
handling various languages, and AraT5 Base [21] 
a foundational version of the AraT5 tailored for 
Arabic but without the enhancements present in 
the V2 version. The primary evaluation metric used 
in these experiments is the BLEU score, which is 
commonly used in machine translation tasks to 
assess the quality of translations. In addition to 
BLEU scores, we also measure validation and test 
losses and compare model predictions against 
reference test sets. Training was conducted 
using an Adaptive Learning Rate with the AdamW 
optimizer, along with a dropout rate of 0.1 to 

prevent overfitting. We employed a batch size 
ranging from 8 to 128, adjusted based on the 
dataset size, and a linear learning rate scheduler. 
The training ran for 22 epochs, with evaluation 
and model saving performed every 500 steps to 
monitor progress and prevent overfitting.

4.1 Performance of Data Augmentation techniques 
To evaluate the performance of the trained 
AraT5-V2 model using different data augmentation 
methods, we calculated the BLEU scores for each 
method separately. Each data augmentation 
method was assessed using its own validation 
split during training, while the test BLEU scores 
were calculated using the original ArSL test set 
90 samples to determine the overall impact on 
the translation task. The results of the AraT5-V2 
model for each data augmentation method are 
presented in Table 1, alongside the results from 
the original dataset before augmentation.

Table 1. Performance Metrics of AraT5-V2 for 
Different Data Augmentation Methods.

As shown in Table 1, the BR method consistently 
demonstrated the best performance, with a 
validation loss of 0.260 and a validation BLEU 
score of 92.778. The test BLEU score for BR 
was 52.71, significantly higher than those of 
the other methods. The large dataset size of 
22,404 samples for BR likely contributed to 
its superior performance, allowing the model 
to learn more robust translation patterns and 
effectively generalize to unseen data.

In contrast, SP and SR exhibited poorer 
performance, with validation losses of 2.173and 
1.795, respectively, and evaluation BLEU scores 
of 25.75 for SP and 29.30for SR. The SR method, 
which used the smallest dataset size of 1,284 
samples, had the lowest test BLEU score of 12.90. 
This indicates that limited data and vocabulary 
coverage significantly reduced its effectiveness. 
However, both SP and SR methods still performed 
better than the original unaugmented ArSL 
dataset, which had a test BLEU score of 11.069, 
demonstrating the value of data augmentation 
in enhancing translation quality.

Moreover, we combined all three data augmentation 
methods (BR, SP, and SR), resulting in a dataset 
of 23,328 samples which is used to train the 
AraT5 V2 model and compared against the AraT5 
Base and mT5 models using the combined data 
augmented dataset. Note that we used the original 
test set to evaluate the models.

Table 2 demonstrates the results of the comparison 
of these models. As shown in Table 2, AraT5 V2 
achieved the highest BLEU scores and the lowest 
validation and test losses, with a validation BLEU 
score of 86.16 and a test BLEU score of 69.41. 
The Base model also performed well in terms 
of validation BLEU score, reaching 35.190, but 
it had a significantly lower test BLEU score of 
33.62. The mT5 model demonstrated moderate 
performance with a validation BLEU score of 
72.380 and a much lower test BLEU score of 
15.157.

Metric BR SP SR Original ArSL
Val. Loss 0.260 2.173 1.795 3.116

Val. BLEU 92.778 25.75 29.30 15.273
Test Loss 2.413 2.396 2.383 2.159
Test BLEU 52.71 13.33 12.90 11.069
Dataset Size 22404 1440 1284 600

3https://huggingface.co/UBC-NLP/AraT5v2-base-1024
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Table 2. Comparison of Different Machine 
Translation Models.

4.2 Results of Data Augmentation Proportion
To further investigate the impact of data 
augmentation on the performance of our 
machine translation model, we conducted a 
data augmentation proportion experiment. This 
study examines how varying the proportions of 
augmented data—specifically 20%, 40%, 80%, and 
100%—affects the AraT5 V2 model’s translation 
accuracy. By systematically adjusting the amount 
of augmented data while maintaining

consistent training setups, this experiment aims to 
identify the optimal balance between data variety 
and volume for enhancing model performance. 
The effectiveness of these proportions will be 
evaluated using BLEU scores, providing insights 
into how different levels of data augmentation 
contribute to the robustness and accuracy of the 
translation models. Table 3 shows the size of 
data proportion for different data augmentation 
methods.

Table 3 shows the dataset sizes for different data 
augmentation methods including BR, SP, SR, and 
the combination of them at proportions of 20%, 
40%, 80%, and 100%. The Total Size represents 
the number of samples corresponding to each 
proportion from the complete dataset. Validation 
and test sizes were created by splitting the total 
dataset and including an additional 90 samples 
from the original ArSL dataset into the test set. 

As shown in Table 4, the BR method outperformed 
other methods across all proportions, achieving 
the highest test BLEU score of 91.57 at 100% 
proportion. This indicates that the BR method 
provides the most robust training data for the 
model, likely due to its ability to capture diverse 
linguistic patterns effectively. Even at lower 
proportions, the BR method demonstrated 
substantial improvements, with a BLEU score 
of 42.49 at 20% augmentation, highlighting its 
strong impact even with less data.

In contrast, the SP and SR methods showed 
relatively lower test BLEU scores across all 
proportions, with the SP method reaching 
a maximum BLEU score of 21.77% at 100% 
augmentation and the SR method peaking at 
18.4%. These results suggest that while SP and 
SR contribute to model performance, their impact 
is less pronounced compared to BR. The lower 
effectiveness of SP may be due to the inherent 
limitations of back- translation, which sometimes 
produces paraphrases that are too similar to 
the original or introduces noise that does not 
enhance the training process. For SR, the 

This approach ensures that each augmentation 
method’s impact can be evaluated under 
consistent conditions, providing insights into 
the effectiveness of varying data sizes and 
combinations on translation accuracy. Table 4 
shows the results of test BLEU for each different 
data augmentation methods and proportions.

relatively poor performance could be attributed 
to the limited vocabulary coverage and context 
relevance of the synonym dictionary used, which 
might have resulted in substitutions that did not 
significantly vary the training data or, in some 
cases, distorted the sentence meaning.

The combined data augmentation methods (All) 
showed a balanced performance, achieving a test 
BLEU score of 85.17% at 100% augmentation, 
indicating that a mixture of augmentation 
techniques can yield high performance but 
may not surpass the effectiveness of BR alone. 
Overall, these findings emphasize the importance 
of selecting appropriate data augmentation 
methods and optimizing their implementation to 
enhance machine translation accuracy, as well 
as the need for more sophisticated approaches 
to improve SP and SR.

3https://huggingface.co/UBC-NLP/AraT5v2-base-1024

Model Val. Loss Val. BLEU Test Loss Test BLEU
AraT5 V2  0.492 86.16 0.174  69.41

Base 1.610 35.190 0.979  33.62
mT5 0.586 72.380 0.265 15.157

Table 3. Data Proportion and Dataset Sizes for Different Data Augmentation Methods.

Method Split 20% 40% 80% 100%

Train. Size 3,908 7,398 14,374 17,863

BR Val. Size 
Test Size

526
526

962
962

1,834
1,834

2,270
2,270

Total Size 4,360 8,722 17,443 21,804
Train. Size 1,985 1,942 1,907 2,173

SP Val. Size
Test Size

18.45
106

22.45
123

23.55
157

25.75
174

Total Size 168 336 672 840
Train. Size 531 640 859 968

SR Val. Size
Test Size

103
103

117
117

144
144

158
158

Total Size 137 274 547 684
Train. Size 4,995 8,728 16,191 19,923

All Val. Size
Test Size

735
735

1,202
1,202

2,135
2,135

2,602
2,602

Total Size 4,665 9,332 18,662 23,328

Method 20% 40% 80% 100%
BR 42.49 72.54 90.97 91.57

SP 12.63 16.52 20.27 21.77
SR 12.01 15.89 15.71 18.49
All 34.73 65.29 82.46 85.17

Table 4. Test BLEU Scores for Different Data Augmentation Methods and Proportions.
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5. Conclusion 
In this study, we enhanced the translation 
of Arabic text into Arabic gloss text using 
advanced data augmentation techniques 
and the AraT5 V2 model. Our results 
showed that the Blank Replacement 
method provided the highest translation 
accuracy, while the combined augmentation 
method also improved performance but did 
not surpass BR. However, in this study we 
used small dataset which was developed 
in the heath field which does not cover a 
common of Arabic words. Future work 
will focus on complete the second phase 
to translate the gloss to text to Arabic sign 
language motions, which leads to develop 
more robust and accurate sign language 
translation systems to better serve the 
Arabic-speaking deaf community.
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Abstract - People who are deaf or hard of hearing often 
face challenges in fully understanding written subtitles 
in videos due to the differences between sign language 
and spoken language, each having unique grammar 
and structures. While many social media platforms 
provide automatic subtitles, they are often insufficient 
for accessibility. Sign language interpretation should 
be included to make video content fully accessible. 
Traditionally, adding sign language to videos involves 
a time-consuming process of recording and embedding 
separate translation videos, which must be redone 
with any changes to the original video. The plugin 
simplifies this process by dynamically translating 
updates directly from subtitle files, significantly reducing 
the time, effort, and cost involved. It allows seamless 
sign language support for any video without modifying 
the original content. The plugin integrates with video 
players, providing a user-controlled, customizable 
sign language window that can be activated, moved, 
resized, or turned off as desired.
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Introduction
The barriers faced by individuals who 
are deaf or hard of hearing often go 
beyond auditory challenges, excluding 
them from essential parts of daily life, 
especially when it comes to written 
language comprehension. Spoken and 
sign languages are inherently different, 
not only in terms of modality but also in 
their syntactic structures, grammars, and 
semantics. This fundamental divergence 
means that subtitles alone are insufficient 
in ensuring full accessibility for the deaf 
and hard-of-hearing communities. Even 
with the widespread adoption of automatic 
subtitles across social media platforms and 
streaming services, many individuals find 
it challenging to interpret these captions, 
as they do not fully reflect the grammar 
or nuances of sign language. Thus, digital 
accessibility efforts that rely solely on 
written subtitles overlook an essential 
aspect of communication— information 
conveyed through sign language.
	

Numerous studies have highlighted the 
importance of sign language in enhancing 
accessibility for deaf and hard-of-hearing 
audiences, emphasizing that subtitles, 
while helpful, are not a substitute for sign 
language interpretation [1]. For instance, 
a report by the World Federation of the 
Deaf highlights that over 70 million people 
around the world use sign language as 
their primary means of communication, 
underscoring the significance of providing 
accessible media that includes sign 
language translation [3]. As a result, 
it is critical to go beyond insufficient 
accessibility measures and incorporate 
sign language interpretations in video 
content to meet the needs of people who 
are deaf or hard of hearing. 
	
This paper explores the traditional 
methods of integrating sign language 
into video content, the limitations of these 
methods, and how modern technology, 
particularly artificial intelligence (AI), can 
revolutionize this process. We propose 
a set of innovative web, video, and PDF 
plugins that allow for the real-time 
generation of sign language interpretations 
synchronized with subtitles. This system 
provides an affordable, sustainable 
solution that can adapt to video updates, 
ensuring that deaf and hard-of-hearing 
users have continuous access to fully 
accessible content.

Methods
The process of developing a fully accessible 
video content platform for the deaf and hard 
of hearing requires overcoming several 
challenges, both technical and practical. 
Traditionally, the inclusion of sign language 
interpretation in videos involves a multi-step 
process, which starts with the script being 
translated into sign language by a trained 
interpreter. This process necessitates 
a professional studio setup where the 
interpreter’s video is recorded, edited, 
and then embedded into the original video 
content. Each time the video or subtitles are 
updated, the sign language video must also 
be redone, which is both time-consuming 
and expensive. This method limits the 
scalability and feasibility of adding sign 
language support to a wide range of video 
content.

This approach transforms this process 
by utilizing artificial intelligence (AI) 
and advanced subtitle synchronization 
techniques. The system we developed 
extracts information from the subtitle 
file of the video and uses it to generate 
real-time, frame-by-frame sign language 
interpretations. This eliminates the need 
for costly re-recordings or post-production 
editing whenever changes are made to 
the video content or subtitles (Figure 1). 

Figure 1. A screenshot from Istanbul Arts and Culture Foundation’s video, using 
SignForDeaf’s Video Sign Language Translation Plugin from their website (https://
www.iksv.org/tr/haberler/iksv-alt-kat-yepyeni-bir-cevrimici-seriye-basliyor-kim-
bu-cizgi-filmciler).
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The core of this solution lies in its ability 
to sustainably translate updates from 
subtitles into sign language, providing a 
continuous and accurate interpretation 
that is synchronized with the video. The 
integration of this system with existing 
video platforms, such as YouTube, is simple 
and requires no modification to the original 
video file. Instead, the plugin acts as an 
overlay, allowing users to activate, move, 
resize, or disable the sign language window 
based on their preferences. This user-
friendly feature ensures that the system 
can be tailored to the specific needs of each 
viewer, enhancing accessibility without 
compromising the visual integrity of the 
video.

Additionally, the plugin is designed with 
future adaptability in mind. As new sign 
languages are added, the system can easily 
be updated to accommodate different 
regions and languages, ensuring its 
applicability in diverse linguistic contexts. 
The modular design also allows for further 
AI advancements, such as improvements 
in real-time language recognition and 
varied interpretations of complex sentence 
structures, to be incorporated without 
requiring major changes to the existing 
framework.

Automatic Subtitle Synchronization
One of the most innovative aspects of 
our plugin is its ability to utilize artificial 
intelligence (AI) to synchronize subtitles with 
the appropriate sign language translation. 
In traditional systems, sign language videos 
must be carefully timed and manually 
synchronized with the content of the video, 

which is a tedious process, especially when 
dealing with videos that are frequently 
updated. Each time a new subtitle is added 
or modified, a complete re-recording of 
the sign language translation is required, 
followed by a re-integration of the video, 
which consumes both time and resources.
SignForDeaf’s AI-powered solution 
dynamically adjusts to any changes made 
in the subtitle files, automatically updating 
the corresponding sign language translation 
without the need for manual intervention. 
This feature allows for synchronization 
that responds to frequent updates, and 
the level of automation not only ensures 
accuracy but also provides the ability to 
handle large volumes of content, making 
it scalable for organizations that produce 
frequent and varied video outputs, a feature 
that previous solutions lack.

Customizable Sign Language Window
A key feature that sets our plugin apart 
is the fully customizable sign language 
window. Accessibility solutions are often 
criticized for being rigid, but this system 
prioritizes user experience in the design 
of the Video Sign Language Translation 
system. Viewers have complete control over 
the display of the sign language window, 
ensuring that it can be adapted to their 
individual preferences. This customization 
includes options to move, resize, or even 
disable the window as needed, giving 
users the flexibility to adjust the display 
based on their viewing environment and 
personal comfort. For example, a user 
watching a video on a small screen, such as 
a mobile phone, may prefer to reduce the 
size of the sign language window or move 

it to a corner of the screen where it does 
not obscure important visual elements. 
Conversely, a user watching on a larger 
screen may choose to enlarge the window 
for greater visibility. 

This user-centered approach ensures 
that the sign language interpretation does 
not interfere with the main video content, 
while still remaining easily accessible as 
needed. Additionally, users can enable or 
disable the sign language feature at any 
time, ensuring that those who choose to 
disable it can watch the video without 
distractions. This flexibility can significantly 
improve the accessibility and inclusiveness 
of video content, particularly for the deaf 
and hard of hearing communities.

Reduced Time and Cost
Traditional methods of adding sign 
language interpretation to videos are often 
prohibitively expensive and time-consuming. 
The process typically involves hiring a 
professional sign language interpreter, 
recording their translation in a studio, and 
then integrating the sign language video into 
the main content through post-production 
editing. This method requires significant 
human and financial resources, which 
can make it unfeasible for small content 
creators or organizations with limited 
budgets. Furthermore, any changes to the 
original video or subtitle text would require 
repeating this entire process, resulting in 
cost and time losses.

Our plugin eliminates these challenges by 
removing the need for constant reshooting 
and manual integration. Once the plugin 
is set up, the sign language interpretation 
is automatically generated based on the 
subtitles, meaning that any changes to 
the subtitles are immediately reflected 
in the sign language translation. This 
drastically reduces both time and cost 
losses required to maintain accessible 
video content, enabling more creators, 
educators, and organizations to provide 
sign language support without the financial 
burden. For instance, in the context of 
a large educational institution or media 
platform, where hundreds of videos may 
be produced each month, the time savings 
can be substantial, allowing resources to 
be allocated toward creating new content 
or improving other accessibility features 
instead.

Additionally, the reduced cost of 
implementation means that smaller 
organizations or independent creators, 
who previously might have been unable 
to afford sign language support, can now 
offer fully accessible videos. This broadens 
the reach of accessible content across 
different platforms and industries, from 
educational videos and online courses 
to entertainment and corporate training 
materials. Ultimately, this not only benefits 
the deaf and hard-of-hearing community by 
providing more inclusive content, but also 
encourages a more widespread adoption 
of accessibility practices across the media 
landscape.
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Conclusion
The implementation of AI-powered sign 
language translation systems represents 
a significant advancement in making 
digital content more accessible to deaf 
and hard-of-hearing communities. By 
addressing the limitations of traditional 
subtitle-based accessibility, this solution 
offers a more inclusive, dynamic option 
to provide synchronized sign language 
interpretation. Not only does this approach 
alleviate the time and financial burdens 
typically associated with creating sign 
language videos, but it also ensures that 
accessibility features can be easily updated 
as content evolves. This is particularly 
important in educational, entertainment, 
and professional contexts, where content 
is frequently refreshed and updated.[2]
Furthermore, this system opens new 
possibilities for the future of accessibility 
in media. As AI continues to advance in 
areas like NLP and gesture recognition, 
we can expect more sophisticated and 
contextually accurate translations, 
potentially bridging gaps between different 
sign languages and spoken languages 
worldwide.[5] This could be transformative 
not only for the deaf and hard-of-hearing 
community but for society as a whole, as 
it promotes inclusivity and breaks down 
communication barriers across linguistic 
and cultural lines.[4]

By integrating AI-powered sign 
language translation into mainstream 
video platforms, content creators and 
organizations have the opportunity 
to significantly improve the viewing 
experience for their audiences. The 
customizable, user-friendly nature of 
the Video Sign Language Plugin allows 
individuals to tailor their accessibility 
experience, making it a versatile tool that 
can accommodate a wide range of personal 
preferences and needs. Moreover, as more 
organizations adopt these technologies, 
we can anticipate a broader cultural shift 
toward the normalization of accessibility 
in digital content, benefiting not only the 
deaf and hard-of-hearing community but 
also society's collective understanding 
of inclusivity.[6]

In conclusion, the widespread adoption 
of AI-powered sign language translation 
tools has the potential to reshape the 
video landscape of the web, making 
digital content accessible to all. It is a 
solution that not only addresses current 
accessibility challenges but also paves the 
way for future advancements, ensuring 
that as technology progresses, no one 
is left behind.
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